A Probabilistic Model of the Categorical Association between Colors

Jason Chuang (Stanford University)
Maureen Stone (StoneSoup Consulting)
Pat Hanrahan (Stanford University)

Color Imaging Conference
November 12, 2008
Overview

• **Introduction**
 – Color names
 – Previous work
 – Goals

• Categorical association
 – Probabilistic framework
 – Results

• Summary
Why Color Names?

• Affect our perception

• Improve communication
Naming Studies

- Earlier studies
 - For 19 languages, only 1 speaker (Berlin & Kay)
 - 10 speakers for English (Benavente)
 - 25-30 speakers for 110 languages (World Color Survey)
More Naming Data

- Online surveys
 - 238 speakers in English (Dolores Labs)
 - 4000 speakers in 20 languages (HP Naming Experiment)
Color Name Models

“Do two colors have the same name?”

“Which color has a more consistent name?”
Color Name Models

- Preserving color names
Color Name Models

- Colors with consistent names
Previous Work

- **Single term**
 - Focus plus boundary
 - Simple partitioning

- **Prototypes**
 - Focus plus distribution
 - Linear combination of names

- **Non-parametric models**
 - Statistical representation
 - Requires sufficient data
Single Terms

Partition the color space into name regions

- Illustrating basic color terms (Berlin & Kay 1969)
- Lin et al. 2000, Chang et al. 2004, Kelly & Judd, ...
Previous Work

• Single term
 – Focus plus boundary
 – Simple partitioning

• Prototypes
 – Focus plus distribution
 – Linear combination of names

• Non-parametric models
 – Statistical representation
 – Requires sufficient data
• Focus plus parameterized distribution
• Linear combination of a list of names
 – Gaussians (Motomura 2001)
 – Sigmoid-Gaussians (Benavente et al. 2002)
Previous Work

- **Single term**
 - Focus plus boundary
 - Simple partitioning

- **Prototypes**
 - Centroid plus distribution
 - Linear combination of names

- **Non-parametric models**
 - Statistical representation
 - Requires sufficient data
Non-Parametric Models

- Don’t assume particular distribution
- Represent each term by a histogram
 - Benavente et al. 2006
 - Moroney 2007
Issues

• Color name regions
 – Different shapes and sizes
 – Want to preserve detailed shapes of the region

• Color vocabulary
 – More than 11 basic color terms
 – Emerging terms, multilingual data
 – Want to determine important color words from data, instead of using a pre-determined list
 – Robust when rare words are included
Our Goals

- Non-parametric model
- Inclusion of all color words, possibly from multiple languages
- Support a rich set of computational tools
Overview

- Introduction
 - Color naming and categories
 - Previous work
 - Goals
- **Categorical association**
 - Probabilistic framework
 - Results
- Summary
Categorical Association

• **Notations**
 – Colors and Words

• Probabilistic Framework
 – “Examples” of colors
 – Color saliency

• Results
 – World Color Survey
 – DoloresLabs Dataset
 – Comparison
Notation

• Color naming data consists of two variables
 – Colors $C = \{ \text{red}, \text{orange}, \text{purple}, \text{green}, \text{blue}, \text{black} \}$
 – Words $W = \{ \text{“aqua”}, \text{“black”}, \text{“blue”}, \text{“brown”}, \text{“chartreuse”}, \text{“cyan”}, \ldots \}$
Relationships

• Two types of relationships
 – Given a color □, what are the likely words applied to the color?

\[P(W | C=\text{□}) \]

 – Give a word “blue”, what are the likely colors the word refers to?

\[P(C | W=\text{“blue”}) \]
Categorical Association

• Notations
 – Colors and Words

• Probabilistic Framework
 – “Example” colors
 – Color saliency

• Results
 – World Color Survey
 – DoloresLabs Dataset
 – Comparison
Categorical Association

- Represent a color by other “example” colors
Categorical Association

- Represent a color by other “example” colors

![Diagram showing categorical association with colors like Aqua, Black, Blue, Brown, Chartreuse, Cyan, etc., and their conditional probabilities P(W|C=) and P(C|W=“Aqua”).]
Categorical Association

• Represent a color by other “example” colors
Categorical Association

• Represent a color by other “example” colors

Sum up distributions, weighted by the frequency of the word.
Categorical Association

• Represent a color by other “example” colors

\[P(C | c=\textcolor{blue}{\text{color}}) = \sum_w P(C | w)P(w | c=\textcolor{blue}{\text{color}}) \]

• Sum contribution from all color words, weighted by frequency of word
Categorical Association

- Represent a color by other “example” colors.

$P(C|c)$
Color Saliency

• Entropy = “Uncertainty”

\[\text{Saliency} = - \frac{1}{ \text{Entropy} } \]

Low Entropy
Weakly associated with many colors

High Entropy
Strongly associated with a few colors

High Saliency

Low Saliency

• Saliency = \(-H(C|c=\text{Few Colors}) = -P(C|c) \log(P(C|c))\)
Categorical Association

- **Notations**
 - Colors and Words

- **Probabilistic Framework**
 - “Example” colors
 - Color saliency

- **Results**
 - World Color Survey
 - DoloresLabs Dataset
 - Comparison
Color Saliency on Munsell Surface

- Based on 6 languages from World Color Survey
- How does saliency match known color foci?
Color Saliency on Munsell Surface

• Based on 6 languages from World Color Survey
• How does saliency match known color foci?
Correspondence with Known Foci

- English basic color foci observed by
 - Orange = Berlin and Kay (1969)
 - Orange = Sturges and Whitfield (1995)
Correspondence with Known Foci

• English basic color foci observed by
 – ● = Berlin and Kay (1969)
Correspondence with Known Foci

- English basic color foci observed by
 - ● = Berlin and Kay (1969)
 - □ = Sturges and Whitfield (1995)
• English basic color foci observed by
 – ⬤ = Berlin and Kay (1969)
DoloresLabs Naming Data

- Unconstrained online naming survey
 - 10,000 colors from 238 speakers
 - 1,966 distinct responses (raw ASCII strings)
 - 1,740 distinct phrases (spellings & punctuations)
 - 302 distinct words

- Non-uniformly sampled from RGB space
Color Saliency in sRGB Gamut

- Plotted in IPT space (assuming sRGB)
Color Saliency in sRGB Gamut

- Plotted in IPT space (assuming sRGB)

IPT space at 8 levels of brightness
Clusters of Salient Basic Colors

- Brown
- Red
- Blue
Clusters of Salient Non-Basic Colors

- Brightness = 0.2
- Brightness = 0.3
- Brightness = 0.4
- Brightness = 0.5
- Brightness = 0.6
- Brightness = 0.7
- Brightness = 0.8
- Brightness = 0.9

Cyan
Lavender
Clusters of Salient Non-Basic Colors

Boynton & Olson (1990)

Cyan

Lavender

Kay & McDaniel (1978)
Color Saliency in sRGB Gamut
Comparison of Munsell/sRGB

Munsell value = 2.0
IPT brightness = 0.2317

Munsell value = 3.0
IPT brightness = 0.3179

Munsell value = 4.0
IPT brightness = 0.4100

Munsell value = 5.0
IPT brightness = 0.5051

Munsell value = 6.0
IPT brightness = 0.6032

Munsell value = 7.0
IPT brightness = 0.7041

Munsell value = 8.0
IPT brightness = 0.8106

Munsell value = 9.0
IPT brightness = 0.9337
Comparison of Munsell/sRGB
Comparison of Munsell/sRGB

Munsell value = 2.0
IPT brightness = 0.2317

Munsell value = 3.0
IPT brightness = 0.3179

Munsell value = 4.0
IPT brightness = 0.4100

Munsell value = 5.0
IPT brightness = 0.5051

Munsell value = 6.0
IPT brightness = 0.6032

Munsell value = 7.0
IPT brightness = 0.7041

Munsell value = 8.0
IPT brightness = 0.8106

Munsell value = 9.0
IPT brightness = 0.9337

sRGB Gamut
Comparison of Munsell/sRGB

Munsell value = 2.0
IPT brightness = 0.2317

Munsell value = 3.0
IPT brightness = 0.3179

Munsell value = 4.0
IPT brightness = 0.4100

Munsell value = 5.0
IPT brightness = 0.5051

Munsell value = 6.0
IPT brightness = 0.6032

Munsell value = 7.0
IPT brightness = 0.7041

Munsell value = 8.0
IPT brightness = 0.8106

Munsell value = 9.0
IPT brightness = 0.9337
Comparison at Munsell Value=7

Munsell Value = 7
IPT Brightness = 0.7041
Comparison at Munsell Value=7

Salient yellow on reflective Surface

Salient yellow on sRGB display

Munsell Value = 7
IPT Brightness = 0.7041
Saliency Differs for Munsell/sRGB

- Munsell value = 2.0
 IPT brightness = 0.2317

- Munsell value = 3.0
 IPT brightness = 0.3179

- Munsell value = 4.0
 IPT brightness = 0.4100

- Munsell value = 5.0
 IPT brightness = 0.5051

- Munsell value = 6.0
 IPT brightness = 0.6032

- Munsell value = 7.0
 IPT brightness = 0.7041

- Munsell value = 8.0
 IPT brightness = 0.8106

- Munsell value = 9.0
 IPT brightness = 0.9337
Overview

• Introduction
 – Color naming and categories
 – Previous work
 – Goals

• Categorical association
 – Probabilistic framework
 – Results

• Summary
Summary

• Categorical association between colors
 – Non-parametric model
 • Captured details and was robust on a large noisy dataset
 – Inclusion of all color words
 • Merged cross-linguistic data
 • Identified contributions from emerging non-basic terms
 – Computational tools
 • Saliency based on entropy
 • Saliency on Munsell surface and for sRGB Gamut