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Abstract
Supporting exploratory visual analysis (EVA) is a central goal of visualization research, and yet our understanding of the pro-
cess is arguably vague and piecemeal. We contribute a consistent definition of EVA through review of the relevant literature, and
an empirical evaluation of existing assumptions regarding how analysts perform EVA using Tableau, a popular visual analysis
tool. We present the results of a study where 27 Tableau users answered various analysis questions across 3 datasets. We mea-
sure task performance, identify recurring patterns across participants’ analyses, and assess variance from task specificity and
dataset. We find striking differences between existing assumptions and the collected data. Participants successfully completed
a variety of tasks, with over 80% accuracy across focused tasks with measurably correct answers. The observed cadence of
analyses is surprisingly slow compared to popular assumptions from the database community. We find significant overlap in
analyses across participants, showing that EVA behaviors can be predictable. Furthermore, we find few structural differences
between behavior graphs for open-ended and more focused exploration tasks.

1. Introduction

Exploratory visual analysis (or EVA) involves identifying questions
of interest, inspecting visualized data, and iteratively refining one’s
questions and hypotheses. Visual analysis tools aim to facilitate this
process by enabling rapid specification of both data transformations
and visualizations, using a combination of direct manipulation and
automated design. With a better understanding of users’ analysis
behavior, we might improve the design of these visualization tools
to promote effective outcomes. However, as an open-ended process
with varied inputs and goals, exploratory visual analysis is often
difficult to characterize and thus appropriately design for.

Existing work provides many theories and assumptions regard-
ing how EVA is conceptualized and performed, which prove in-
valuable in designing new EVA systems. However, we see in the
literature that these contributions are generally defined in small
snippets spread across many research articles. Existing surveys and
frameworks touch on related topics, such as task analysis (e.g.,
[BM13, LTM18]), provenance (e.g., [ED16, HMSA08, RESC16]),
and interaction (e.g., [HS12]), but not specifically for understand-
ing EVA. Furthermore, we find several “schools of thought” on
EVA, some of which may contradict one another. For example, it
is argued that exploration can only be open-ended, without clear a
priori goals or hypotheses (e.g., [AZL∗19]). In contrast, we also
see specific examples where analysts come to an EVA session with
a clear goal or hypothesis in mind (e.g., [FPDs12, SKL∗16]). This
broad dispersion of the different definitions of EVA makes it diffi-

cult as a community to rigorously discuss, evaluate, and ultimately
contribute to new research to advance EVA systems.

The goal of this work is to connect the many different ideas and
concepts regarding EVA together and bring them into focus, en-
abling the community to more easily reflect on the way we moti-
vate, analyze, and ultimately support visual exploration tasks. To
this end, we make two major contributions:
• A review of relevant EVA literature, highlighting core ideas,

themes, and discrepancies from across multiple research areas.
• An analysis of provenance data collected from an exploratory

study using Tableau, to shed light on particularly contentious or
seemingly undervalued EVA topics.
We reviewed 41 papers for insights into the EVA process. Three

major themes emerged, centered around: 1) EVA goals and intent,
2) EVA behaviors and structure, and 3) EVA performance for both
the analyst and the system. Within each theme, we identify one or
more research questions that appear unanswered by the literature.
Our initial aim is to provide additional context — not necessarily
evidence — with respect to these questions and to encourage the
community to take up these questions in future work.

To investigate further, we conduct a study with 27 Tableau users
exploring three real-world datasets using Tableau Desktop. Our
study design utilizes four task types of varying specificity, designed
to match the common visual analysis tasks that occur during EVA,
identified in our literature review. These tasks range from focused
tasks with measurably correct answers to more open-ended, yet still
goal-directed tasks. We summarize our main findings:
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Evaluating Performance: We evaluate several performance
metrics, such as pacing metrics (e.g., interaction rates, think
time [BCS16]), as well as the variety and quality of task responses.
Though not an exact match, we compare our accuracy results
to prior reports of false discovery rates during EVA [ZZZK18].
Whereas prior work finds a 60% false discovery rate for “insights”
reported during open-ended exploration, participants responding to
our goal-directed prompts exhibit over 80% accuracy on focused
tasks with measurably correct answers, and were generally cautious
to avoid false discoveries. Furthermore, while interaction latency in
EVA is frequently discussed [HS12,LH14,CXGH08,ZGC∗16], the
pace of exploration lacks realistic contextualization in some parts
of the literature. In particular, a subset of the literature assumes that
the time between interactions (or think time) is limited, constraining
database optimization methods (e.g., [CGZ∗16,BCS16,RAK∗17]),
at least for interactions of low cognitive complexity [LH14]. Our
results show that high think times lead to slow analysis pace, and
the pace of analysts is notably slower than assumed by this prior
work, even with interaction taken into account. We also observe
“bursty” behavior: participants spend some of their (think) time
planning, then performing a relatively faster sequence of interac-
tions. These results suggest that visual analysis evaluations could
be improved via more realistic scenarios and accurate parameters.

Evaluating Goals and Structure: We next analyze participants’
analysis behavior graphs — a structural model of “states” visited.
We find that several assumptions of the structure of EVA are sup-
ported by our analysis. For example, participants’ analysis ses-
sions are consistent with a depth-first search process, confirming
arguments made in prior work [WMA∗16b]. However, our results
also contradict other assumptions. The literature is inconsistent
on whether EVA follows clear structure and patterns, and some
argue that individual differences could make EVA behaviors un-
predictable [ZOC∗12]. We find that participants’ analyses exhibit
strong similarities and are somewhat predictable, but only at spe-
cific points in analysis sessions. The breadth and depth of analysis
graphs are modulated by task, but the overall ratio of these mea-
sures is consistent across task types. Ultimately, we find that ana-
lysts’ performance and strategies during open-ended tasks can be
structurally similar to observations of more focused tasks, encour-
aging us to reconsider the distinctions made between open-ended
exploration and more focused analysis. Though speculative, this
similarity may be explained by a model in which analysts with
open-ended aims formulate a series of more focused and goal-
directed sub-tasks to pursue.

In sum, these results provide new perspectives on the content,
structure, and efficacy of EVA sessions. We conclude with a discus-
sion of how our findings might be applied to further the design of
not only visualization tools, but also the way we evaluate them. All
anonymized data artifacts generated by this work have been shared
as a community resource for further study at https://github.
com/leibatt/characterizing-eva-tableau.

2. Related Work

Our analysis builds on several areas of related work, such as log-
ging interactions, modeling analysis states, and analyzing patterns
in the resulting data structures. Visualization system state is of-
ten recorded via histories [HMSA08], interaction logs [ED16], and

provenance tracking [LWPL11, CFS∗06, BCC∗05, SASF11]. We
rely on built-in logging in Tableau [STH02] for analysis.

Visualization Theory & Process Models: Our work is informed
by models of the visual analysis process developed through ex-
ploratory studies, such as those by Isenberg et al. [ITC08] and
Grammel et al. [GTS10]. Isenberg et al. present a framework de-
scribing how teams collaborate during exploration [ITC08]. Gram-
mel et al. present a model of how novice users construct visual-
izations in Tableau, and barriers to the design process [GTS10].
Brehmer and Munzner present a multi-level typology of visual
analysis tasks [BM13], synthesized from a review of the litera-
ture on task analysis. Lam et al. review IEEE InfoVis design study
papers to evaluate how high-level goals decompose into concrete
tasks and visual analysis steps [LTM18]. However, like the many
papers we evaluate in our literature review, existing theoretical
work generally lacks a clear definition of exploratory visual analy-
sis (also observed by Lam et al. [LTM18]), which we aim to con-
tribute in this work. Furthermore, with our focus on log analysis,
our metrics are primarily quantitative in nature, providing empir-
ical context for a variety of EVA assumptions from the literature.

We focus on task or action-based models in our analy-
sis [GZ09,BM13,YKSJ07,LTM18], particularly fine-grained mod-
els [HMSA08, YKSJ07]. We use the task model for Tableau pro-
posed by Heer et al. [HMSA08], which assigns interactions in
Tableau to five categories: “shelf (add, remove, replace), data (bin,
derive field), analysis (filter, sort), worksheet (add, delete, dupli-
cate), and formatting (resize, style) commands.”.

Interaction Sequences: Interaction sequences reveal temporal
relationships between observed interactions. Guo et al. [GGZL16]
identify common sequences that lead to insights. Gotz and
Wen [GW09] identify four common interaction sub-sequences,
which they use to generate visualization recommendations. Oth-
ers compute n-grams to identify common sub-sequences [BJK∗16,
BCS16]. Sequences are also used to build predictive (e.g.,
Markov) models, which can be used to compare analysts’ perfor-
mance [RJPL16], and predict users’ future interactions [BCS16,
DC17], task performance [GL12, BOZ∗14a], or personality
traits [BOZ∗14a]. We use interaction sequences and more com-
plex structures to track changes in analysis state over time. We con-
tribute a new perspective on visual analysis patterns and structure
using these quantitative methods.

Behavior Graphs: Problem-solving behavior can be modeled as
a set of states along with a set of operations for moving between
states [New72], including visual analysis [WMA∗16b, STM17,
WQM∗17, SvW08, ST15, jJKMG07]. Graphs can capture more
complex paths and patterns, such as back-tracking or state revis-
itation. Alternate analysis paths are depicted as branches from an
analysis state. Branching can occur due to manipulation of anal-
ysis history (e.g., undo-redo interactions). Though many projects
consider how to display history directly to users [HMSA08], past
work lacks a characterization of the structure of exploratory analy-
sis graphs across a range of conditions (e.g., tasks and datasets). Be-
havior graphs are also used in web browsing and click stream anal-
ysis [CPVDW∗01, WHS∗02, LWD∗17, New72]. We leverage past
work by similarly visualizing behavior graphs in Section 6, con-
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tributing a structural signature for analysis sessions, through which
differences in analysis strategies can be measured during EVA.

Insight-Based Evaluations: Insight-based evaluations attempt
to catalog “insights” generated through open-ended visualization
use [SND05, SNLD06, LH14, GGZL16, ZZZK18]. These methods
collect qualitative data about the EVA process, which researchers
code and analyze. While useful for identifying meaningful cogni-
tive events, the veracity of reported insights must be evaluated with
care. However, having participants engage in open-ended explo-
ration without clear goals and encouraging them to verbalize all
insights that come to mind may decrease accuracy in visual anal-
ysis tasks. We use directed task prompts representative of visual
analysis tasks that commonly occur during EVA, ranging from fo-
cused EVA tasks with verifiable answers to more open-ended, but
still goal-directed, tasks. These tasks were identified through our
literature review. We evaluate analysts’ performance and analysis
strategies, and compare with prior insight-based studies.
3. Themes in the EVA Literature

Through a review of the EVA literature we identify and discuss
three major themes that appear frequently throughout: exploration
goals, structure, and performance. We then present a summary def-
inition of EVA based on our findings.

3.1. Review Methodology

We utilized the following paper selection method for our review:
1. Papers that analyze or design for EVA contexts were selected.
2. Papers described or referenced by papers from step 1 as also

analyzing or designing for EVA were selected.
3. Tasks or topics from papers from step 1 that were described as

relevant to EVA were identified. Task relevance suggested by
paper authors or study subjects was considered (e.g., subjects’
comments observed by Alspaugh et al. [AZL∗19]). Then rele-
vant, well-known papers that also discuss these tasks and topics
were identified, such as the work by Kandel et al. [KPHH12].
These papers are only used to provide context, other irrelevant
tasks or topics from these papers are excluded from our review.
Step 1 yielded 39 papers and step 2 yielded 2 papers [HS12,

Shn96] for review. Step 3 Yielded 7 papers to provide additional
context for specific EVA topics and tasks [Lam08,HMSA08,KS12,
PC05, MWN∗19, ZOC∗12, KPHH12]†.

The selected papers were reviewed to identify major themes,
and three themes emerged: EVA goals, structure, and performance.
These themes occurred most frequently across the selected papers,
and often as core priorities, for example Battle et al. prioritize
system performance during EVA [BCS16], and Lam et al. prior-
itize understanding analysis goals in various contexts, including
EVA [LTM18]. A subsequent review was made to capture similar-
ities and differences between papers with respect to these themes.

3.2. Exploration Goals

Formulation and Evolution of Goals: An oft-stated goal of EVA
is the production of new insights or observations from a given

† The full list of papers yielded from each step, along with our reasoning
for the inclusion of each paper, is provided in the supplemental materials.

dataset (insight generation) [ED16, LTM18, jJKMG07, GGZL16,
ZGC∗16, ZZZK18, LH14, FPDs12]. Lam et al. [LTM18] describe
the goal of exploration as “Discover[ing] Observation[s]”; how-
ever, this goal is vague in comparison to other visual analytic goals.
Liu & Heer argue that EVA often “does not have a clear goal
state” [LH14], which is a popular sentiment in both the visual-
ization [Kei01,AZL∗19,RJPL16] and database [IPC15] communi-
ties. For example, Idreos et al. [IPC15] describe EVA as a situation
where analysts may not know exactly what they are looking for, but
they will know something interesting when they see it. Keim makes
a stronger argument: that EVA is more effective when the goals are
less clear [Kei01]. Alspaugh et al. [AZL∗19] take this idea even
further by saying that exploration does not have well-formed goals;
once clear goals are formed, the analysis is no longer exploration.

Others take a different view, saying that analysts’ goals evolve
throughout the course of an EVA session: the analyst starts with
a vague goal, and refines and sharpens this goal as they ex-
plore [RJPL16, GW09, WMA∗16b]. For example, Wongsupha-
sawat et al. [WMA∗16b] describe the evolution of analysts’ goals
to motivate the Voyager system design: “Analysts’ interests will
evolve as they browse their data, and so the gallery [of suggested
visualizations] must be adaptable to more focused explorations.”

Bottom-Up Versus Top-Down Exploration: Exploration is of-
ten described as “open-ended”, where many of the papers we re-
viewed equate exploration with at most vaguely defined tasks (e.g.,
[LH14,RJPL16,AZL∗19,ZGC∗16,ZZZK18]): visual analysis per-
formed without an explicit objective, perusing a dataset for inter-
esting observations. Open-endedness seems to be tightly coupled
with the notion of opportunistic analysis [Tuk77, LH14, AZL∗19,
RJPL16]. For example, Alspaugh et al. [AZL∗19] argue that during
EVA, “... actions are driven in reaction to the data, in a bottom-up
fashion...”. Liu & Heer [LH14] suggest that “User interaction may
be triggered by salient visual cues in the display...”. There seems to
be an argument in a subset of the literature that exploration must
be unconstrained (e.g., by goals or tasks) to allow for an organic
“bottom-up” process of uncovering new insights from a dataset.

In contrast, other projects describe scenarios where analysts
come to an exploration session with a high-level goal or concrete
hypothesis in mind. Liu & Heer [LH14] suggest that user inter-
actions during EVA may be “... driven by a priori hypotheses...”.
Gotz & Zhou [GZ08] describe a specific example with a finan-
cial analyst exploring stock market data to identify and prioritize
which stocks to invest in. Perer & Shneiderman [PS08] recount ex-
amples of domain analysts “trying to sift through gigabytes of ge-
nomic data to understand the causes of inherited disease, to filter
legal cases in search of all relevant precedents, or to discover be-
havioral patterns in social networks with billions of people.” Fisher
et al. [FPDs12] study in-depth cases of EVA with three different an-
alysts with specific goals; for example: “Sam is analyzing Twitter
data to understand relationships between the use of vocabulary and
sentiment.” Kalinin et al. [KCZ14] describe two motivating scenar-
ios, with users exploring stock data and astronomy data for records
(i.e., stocks, celestial objects) with specific properties (e.g., stars
with high brightness). Siddiqui et al. [SKL∗16] describe three spe-
cific use cases, where scientists, advertisers and clinical researchers
struggled to successfully explore their dataset for specific visual
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patterns. Zgraggen et al. [ZZZK18] motivate the multiple compar-
isons problem in EVA with the story of “Jean,” an employee at a
non-profit who is interested in exploring his organization’s data to
identify the best gift to send to their donors. In all of these exam-
ples, analysts are still performing EVA, but with concrete objectives
to structure and focus exploration. These examples contradict the
assumption of a purely bottom-up analysis strategy during EVA,
indicating that, for realistic scenarios, top-down goals (including
broader organizational objectives) need to be accounted for.

From our review, we observe that discussions of EVA include a
spectrum of goal specifications, from no goals at all, to clear a pri-
ori goals and/or hypotheses. Analysts’ positions within this spec-
trum may evolve as they learn more about their data. Furthermore,
analysts may utilize both top-down (i.e., goal-directed) and bottom-
up (i.e., opportunistic) strategies as they explore [RJPL16,LTM18].
Thus no one strategy completely represents how exploration un-
folds, and both top-down and bottom-up strategies should be con-
sidered when analyzing and evaluating EVA use cases.

3.3. Exploration Structure

Phases of Exploration: EVA may involve iteration within and
oscillation between phases of exploration, with analysts pursu-
ing multiple branches of analysis over time [DR01, HMSA08].
However, the literature is inconsistent in defining exactly what
the different phases of EVA are. Both Battle et al. [BCS16]
and Keim [Kei01] assume that EVA follows Shneiderman’s
information-seeking mantra [Shn96]: “Overview first, zoom and
filter, details on demand”. Gotz & Zhou argue that users switch
between two phases: browsing and querying of data to uncover
insights, and recording their insights (e.g., writing notes) [GZ08].
Heer & Shneiderman [HS12] state that EVA “typically progresses
in an iterative process of view creation, exploration, and refine-
ment,” where exploration happens at two levels: 1) as users interact
with specific visualizations, and 2) in a larger cycle where users
explore different visualizations. This concept is echoed by Gram-
mel et al. [GTS10]. Perer & Sheiderman [PS08] say that analysts
alternate between systematic exploration (searching with thorough
coverage of the data space) and flexible exploration (or open-ended
search). Wongsuphasawat et al. make a similar argument, inspired
by earlier work [Tuk77]: “Exploratory visual analysis is highly it-
erative, involving both open-ended exploration and targeted ques-
tion answering...” [WMA∗16b]. The common theme is that EVA
involves alternating between open-ended and focused exploration.

EVA and Search: Terms like “query” [GZ08, LKS13, KJTN14,
DPD14, KCZ14, SKL∗16], “browse” [LH14, GGZL16, BCS16],
and “search” [KS12, WMA∗16b, PS08] are frequently associated
with visual exploration. In EVA, users are often searching for novel
observations in a dataset, which could inform or validate future hy-
potheses [Kei01,LH14,GZ08,RJPL16,AZL∗19,ZZZK18]. Jankun-
Kelly et al. [jJKMG07] observe that earlier EVA systems “assume
visualization exploration is equivalent to navigating a multidimen-
sional parameter space,” essentially a directed search of the param-
eter space of data transformations and visual encodings — a model
subsequently adopted by visualization recommenders such as Com-
passQL [WMA∗16a] and Draco [MWN∗19]. Perer & Shneider-
man [PS08] make a similarly strong connection between EVA and

search by incorporating support for what they call “systematic ex-
ploration,” an exploration strategy that “guarantees that all mea-
sures, dimensions and features of a data set are studied.” Oth-
ers [DPD14, KCZ14, VRM∗15, SKL∗16, DHPP17] propose tech-
niques to automatically search the data space for interesting data re-
gions or collections of visualizations for the user to review. The idea
of searching for insights shares strong similarities with Pirolli &
Card’s Information Foraging loop [PC05], in particular the “Read
and extract” action, where users extract observations or “evidence”
that may “trigger new hypotheses and searches”. Thus existing
models of search behavior may play an important role in under-
standing behavioral patterns and analysis structure in EVA.

Analysis Tasks: Analysts seem to decompose their analyses into
smaller tasks and subtasks [GZ08, RJPL16, AES05], where tasks
may be re-used across datasets [PS08]. In the literature, we observe
a consensus that EVA involves specific low-level visual analytics
tasks and that specific classes of tasks occur frequently in EVA:

• understanding data correctness and semantics [PS08, AZL∗19,
KS12] (overlaps with “profiling” [KPHH12]),

• characterizing data distributions and relationships [Tuk77,PS08,
IPC15, SKL∗16, AZL∗19, ZZZK18, CGZ∗16, KS12, SKL∗16,
AES05] (overlaps with“profiling” and “modeling” [KPHH12]),

• analyzing causal relationships [PS08, HS12, STH02] (overlaps
with “modeling” [KPHH12]),

• hypothesis formulation and verification [PS08, Kei01, LH14,
RJPL16, SKL∗16, AES05, AZL∗19],

• and decision making [RJPL16, RAK∗17, KJTN14].

For example, Stolte et al. [STH02] describe EVA as the process
of “extract[ing] meaning from data: to discover structure, find pat-
terns, and derive causal relationships.” In similar spirit, Perer &
Shneiderman [PS08] argue that during EVA, analysts seek to “...un-
derstand patterns, discern relationships, identify outliers, and dis-
cover gaps.” Alspaugh et al. [AZL∗19] find that analysts describe
several of their own activities as exploration activities, which were
re-classified by Alspaugh et al. as understanding data semantics and
correctness or characterizing data distributions and relationships.

Interactions: EVA involves sequences of small, incremental
steps (i.e., interactions) to formulate and answer questions about
the data [HMSA08, GW09, WMA∗16b]. Iteration could manifest
as multiple interactions with the same data/visualization state, or a
move to a new state. Interactions play an integral role in helping an-
alysts explore their data [YKSJ07, HS12, jJKMG07, PSCO09]. For
example, Jankun-Kelly et al. argue that “... the interaction with both
the data and its depiction is as important as the data and depiction
itself” [jJKMG07]. Intuitively this makes sense, as (inter)actions
are the building blocks to complete low-level EVA tasks [GZ08].

Predictability: EVA is also described as “unpredictable”
[STH02], where it may be unclear what the user will do throughout
an EVA session. Many factors may influence predictability. A crit-
ical question is whether analysts will produce similar results when
performing similar EVA tasks. If analysts approach an EVA task
differently, then the outcomes will be hard to predict. If analysts ar-
rive at similar answers, with notable overlap in strategies, then there
may be opportunities to predict future outcomes [DC17, BCS16].
Ziemkiewicz et al. [ZOC∗12] argue that differences in users’ indi-
vidual experiences drive differences in analysis outcomes with vi-
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sual analysis tools. It is unclear whether analysts generally utilize
similar analysis sequences during EVA, or arrive at similar answers
to EVA tasks and subtasks, requiring further investigation.

3.4. Exploration Performance

An ambitious goal of visual analytics is to support “fluent and flex-
ible use of visualizations at rates resonant with the pace of human
thought” [HS12]. Liu & Heer divide [LH14] this goal into two spe-
cific research questions: “... understanding the rate of cognitive ac-
tivities in the context of visualization, and supporting these cogni-
tive processes through appropriately designed and performant sys-
tems.” Here we discuss themes in the literature focused on measur-
ing, supporting and improving: 1) the exploration pace and accu-
racy of end users and 2) the performance of EVA systems.

Pacing and Analyst Performance: A number of methods have
been developed to measure the pace of exploration. Interaction rate,
or the number of interactions performed per unit time, is a com-
mon measure of exploration pacing [LH14, ZZZK18, FPH19]. In-
sight generation rate is also a prominent pacing metric, particularly
for open-ended exploration tasks [ED16,LH14,GGZL16,ZGC∗16,
ZZZK18]. Feng et al. [FPH19] propose new metrics, such as ex-
ploration uniqueness, to capture more nuanced information from
casual, open-ended exploration sessions on the web.

Several observations regard how users’ selection of interactions
can affect exploration pacing. Guo et al. [GGZL16] find that more
exploration-focused interactions lead to more insights being gen-
erated. More broadly, Lam [Lam08] observes that high cognitive
load can impact visual analytic performance. Extrapolating from
this observation, high cognitive load interactions, such as writing a
SQL query, could lead to a slower exploration pace.

Zgraggen et al. [ZZZK18] argue that not only the number of in-
sights, but also the quality of insights are critical to gauging the
effectiveness of EVA. Their study finds a 60% rate of false discov-
eries (i.e., insights that do not hold for the population-level data) for
unconstrained, open-ended exploration by novices. They ultimately
argue that EVA systems should help users formulate a reliable men-
tal model of the data, for example more accurate insights.

Wongsuphasawat et al. [WMA∗16b] evaluate the number of
unique data attribute combinations explored by users, to gauge
whether exploration sessions increase in breadth when users are
provided with useful visualization recommendations. Though not a
direct pacing metric, exploration breadth can contribute to an over-
all understanding of analysts’ performance.

System Performance: We note a general consensus within both
the database and visualization communities that response time la-
tency is a critical performance measure for EVA systems. For ex-
ample, Liu & Heer [LH14] observe that high response time laten-
cies (500ms or longer) can impede exploration performance and
progress, where analysts may be more sensitive to high latencies for
some interactions (e.g., brush filters) over others (e.g., zooming).
Zgraggen et al. [ZGC∗16] observe similar outcomes when evaluat-
ing progressive visualizations. Idreos et al. [IPC15] survey a range
of database projects focused on optimization and performance for
EVA contexts, and also observe that response time latency is the
primary performance measure within these projects.

To study the effects of latency, both Liu & Heer [LH14] and
Zgraggen et al. [ZZZK18] inject latency into EVA systems and
measure the resulting interaction rates of analysts to gauge system
performance. The idea is that latency will likely slow the user’s ex-
ploration progress, resulting in fewer interactions over time. Crotty
et al. [CGZ∗16] propose optimizations to reduce system latency
for big data EVA contexts, in an effort to improve interaction rates.
Rather than measuring interaction rates, one can instead measure
the average or worst case latencies observed per interaction, which
several database research projects utilize to evaluate optimizations
for EVA systems [CXGH08,KJTN14,BCS16,CGZ∗16,RAK∗17].

To measure effects over an entire EVA session, alternative met-
rics include total exploration time (i.e., the duration of a single EVA
session) [DPD14, FPH19], and total user effort (i.e., total interac-
tions performed) [DC17,DPD14,GW09,FPH19]. These metrics are
often utilized to gauge whether recommendation-focused optimiza-
tions help users to spend less time and effort exploring the data to
achieve their analysis goals [DPD14].

Pacing Optimization Constraints: Multiple projects further
constrain EVA system optimization by not only positing latency
constraints (e.g., system response time latencies under 500ms), but
also assuming a rapid pace of exploration, where users quickly per-
form successive interactions. For example, Gotz & Zhou [GZ08]
argue that “During a visual analytic task, users typically perform
a very large number of activities at a very fast pace,” implying
that users perform interactions quickly during most visual ana-
lytic tasks (including EVA). Narrowing the scope to EVA, Fisher
et al. [FPDs12] argue that “In exploratory data visualization, it
is common to rapidly iterate through different views and queries
about a data-set.” In a more recent example, Battle et al. [BCS16]
deploy new optimizations to reduce response time latency for pan-
and-zoom applications by prefetching data regions (i.e., data tiles)
that the user may pan or zoom to next. Battle et al. argue that due
to the presumably fast pace of EVA, the system “... may only have
time to fetch a small number of tiles before the user’s next request,”
motivating a need for accurate and efficient prediction and prioriti-
zation of the set of tiles to prefetch before the user’s next interac-
tion. This work seems to argue that due to the fast pace of EVA, the
time between interactions (or think time) is restricted, limiting how
we deploy sophisticated (e.g., predictive) optimizations for EVA.

3.5. Synthesized Definition of EVA

Exploratory data analysis (or EDA, originally coined by John
Tukey [Tuk77]) encompasses the tasks of learning about and mak-
ing sense of a new dataset. We define exploratory visual analysis
(or EVA) as a subset of exploratory data analysis, where visualiza-
tions are the primary output medium and input interface for explo-
ration. EVA is often viewed as a high-level analysis goal, which can
range from being precise (e.g., exploring an existing hypothesis or
hunch) to quite vague (e.g., wanting to find something “interest-
ing” in the data). During EVA, the analyst updates and refines their
goals through subsequent interactions with and manipulation of the
new dataset. Due to the inherent complexity in accomplishing high-
level exploration goals, analysts often decompose their exploration
into a series of more focused visual analysis subtasks, which in turn
could be partitioned further into smaller subtasks, and so on. Sev-
eral visual analysis subtasks are commonly associated with EVA:
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assessing the quality and semantics of the data, discovering un-
derlying relationships and statistical distributions within the data,
formulating and verifying hypotheses, and evaluating causality or
more complex models on the data. These subtasks are not unique to
EVA, but occur often during EVA contexts nonetheless, and range
from being more focused (i.e., data quality assessment) to more
open-ended (i.e., causality analysis and modeling).

We note that this definition is quite broad, revealing a lack of
precision and consistency in how EVA is discussed in the literature.

3.6. Summary

We now summarize our review and posit research questions, focus-
ing on topics that lack consensus or corroborating evidence.

Goals Summary: Discrepancies across the literature suggest
that we lack a shared definition that covers the various ways EVA
goals are formulated. Analysts who perform EVA may come to it
with a clear intent (i.e., explicit goals and tasks), with no clear intent
(i.e., no pre-conceived goals or tasks), or somewhere in between
(i.e., vague goals, a few initial tasks). As such, it seems beneficial
to account for both top-down (i.e., focused) and bottom-up (i.e., op-
portunistic) exploration strategies when evaluating EVA behavior.
We utilize these insights in the design of our exploratory study.

Structure Summary: Prior work suggests that actions and tasks
during EVA are not purely opportunistic: exploration behavior is
not only dependent on what is observed from the data, but also
on the analyst’s goals and experience [PS08, RJPL16]. Analysts
may incorporate concrete analysis steps or tasks that they have per-
formed in the past. However, analysts may select among these tasks
opportunistically, based on what they observe in the data. Thus ex-
ploration sessions appear to have some structure to them, though
the discrepancies in the literature make it difficult to reason about
what structural properties to expect for a specific exploration use
case (i.e., for real log data collected from a study on EVA). Here,
we focus on two specific aspects of EVA structure, organization and
overlap (or predictability):

• (S1): How are focused and open-ended EVA sessions organized
(e.g., are they breadth- or depth-oriented)? (Section 6.2)

• (S2): How predictable are participants’ EVA paths, given differ-
ences in task specificity/open-endedness? (Section 6.3)

Performance Summary: We find consensus around popular
performance metrics for EVA (interaction rates, response time la-
tency) and their outcomes (latency hinders exploration). However,
more recent metrics and assumptions have only been measured in
a limited number of experiments: the accuracy of insights, and ex-
ploration breadth, uniqueness, and pace. We focus on two metrics
in our performance analysis, accuracy and pacing:

• (P1): How does the accuracy of EVA compare for focused, goal-
directed EVA? (Section 5.1)

• (P2): How does the pace of EVA influence available time for
deploying system optimizations? (Section 5.2)

4. Exploratory Study Design

Our literature review answers some questions, but also produces
new ones. To further investigate our research questions in Sec-
tion 3.6, we designed an exploratory study of analysis behavior.

Our goal in the study design is to capture realistic visual analy-
sis behavior during specific analytic subtasks relevant to EVA. To
ensure that participants could use a familiar tool, we selected the
commercial tool Tableau for analysis. Even one commercial tool
can still provide useful insights into the strategies and needs of end
users [GTS10,HMSA08,BDM∗18]. Therefore, we focused our ef-
forts on this one tool, allowing us ensure it was properly instru-
mented, designing realistic visual analysis subtasks for analysis,
and recruiting local analysts with Tableau experience to participate.
We discuss the limitations of our study design in Section 4.6.

4.1. Participants

We recruited participants via university mailing lists and local
Tableau User Groups (e.g., message boards, meet-ups). 27 Tableau
users participated in the study (10 male, 17 female, age 23-47
years). 22 participants were recruited from our university cam-
pus, 5 from our metropolitan area. Participants had no prior ex-
perience with the study datasets, and used Tableau either for work,
or through classes. Participants varied widely in Tableau and data
analysis experience, from just learning Tableau (including 13 stu-
dents) to seasoned veteran analysts to Tableau power users.

4.2. Protocol

Participants completed an initial survey online. Qualifying partici-
pants completed a 90-120 minute in-person session (on campus, or
at their workplace), consisting of: 1) study overview and consent
form; 2) 5 minute warm-up with Tableau on a movies dataset; 3)
30 minute analysis block with one dataset; 4) 30 minute block with
another dataset; and 5) exit survey. Analysis blocks included a 5
minute warm-up for the given dataset. Task sheets were provided,
with 4 visual analysis subtasks to complete per block (8 total). Sub-
task prompts were printed for participants, as well as a dataset sup-
plement document defining the data attributes, and a map of the
USA. Participants were allowed to take notes, if desired, and were
compensated with a $25 Amazon gift card. A 15-inch Macbook Pro
with Tableau Desktop pre-installed was provided to participants.
Datasets were loaded directly into Tableau Desktop 10.3 (the latest
version that supported the logging features required for analysis).

4.3. Datasets

We evaluate three real-world datasets, selected for similar complex-
ity, sufficiently large size to simulate large-scale analysis, relevance
to real-world questions (irrelevant attributes were removed). Fur-
thermore, we selected datasets used in previous studies of visual
analysis and exploration behavior: flight performance data [LH14],
wildlife strikes [WMA∗16b], and weather data [KH18].

1. FAA (31 columns, 34.5M rows, 5.36GB)‡: recorded flights,
with itinerary (destination, distance, etc.) and performance mea-
sures (arrival delays, cancellations, etc.).

2. Weather (35 columns, 56.2M rows, 3.53GB)§: daily weather
station reports, containing measures (precipitation, temperature,
etc.) and observed phenomena (e.g., tornados, ground fog, etc.)

‡ https://www.transtats.bts.gov/Tables.asp?DB_ID=120
§ https://www.ncdc.noaa.gov/ghcn-daily-description
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Dataset Subtask Prompt

Birdstrikes T1
Consider these four parts of the aircraft: engine 1 ([Dam Eng1]), engine 2 ([Dam Eng2]), the
windshield ([Dam Windshield]), and wing/rotor ([Dam Wing Rot]). Which parts of the aircraft
appear to get damaged the most?

Birdstrikes T2
Which aircraft classes ([Ac Class]), if any, appear to be more susceptible to damage ([Damage])
from animal strikes? Note that [Damage] also records when no damage has occurred.

Birdstrikes T3
What relationships (if any) do you observe involving weather conditions ([Precip], [Sky]) and
strike frequency, or counts over time ([Incident Date])?

Birdstrikes T4
What are the most common conditions for an animal strike? Note that this is not limited to
weather conditions, any dataset columns that are interesting to you can be included.

FAA T1
How do cancelled flights ([Cancelled]), diverted flights ([Diverted]), and delayed flights
([ArrDelay], [DepDelay]) compare in terms of counts or frequency?

FAA T2
What patterns (if any) do you observe in the count of flights over time ([FlightDate])? If any
patterns are observed, what deviations (if any) do you see for individual airlines ([UniqueCarrier])?

FAA T3
What relationships (if any) do you find involving flight distance ([Distance]) and arrival
delays ([ArrDelay])?

FAA T4
Suppose Delta Airlines wants to expand 3 airports. Based on your analysis of the data, which
3 airports would you recommend to Delta Airlines (airport code DL)? Existing Delta Airlines
airports, and/or airports that Delta doesn’t cover, can be included in your analysis.

Weather T1
Consider the following weather measurements: Heavy Fog ([Heavy Fog]), Mist ([Mist]),
Drizzle ([Drizzle]), and Ground Fog ([Ground Fog]). Which measurements have more data?
Which weather measures (if any) would you remove from the dataset?

Weather T2
How have maximum temperatures ([T Max]) and minimum temperatures ([T Min]) changed
over the duration of the dataset (i.e., over the [Date] column)?

Weather T3
How do the wind ([High Winds]) measurements compare for the northeast and southwest
regions of the US?

Weather T4 What weather predictions would you make for February 14th 2018 in Seattle, and why?

Table 1: Visual analysis subtask prompts given to participants for each dataset.

3. Birdstrikes (94 columns, 173K rows, 91MB)¶: incidents of
aircraft (e.g., airplanes) striking wildlife (e.g., deer, birds), with
contextual details (e.g., weather conditions, total struck, etc.).

4.4. Visual Analysis Subtasks

The goal of this study is to better understand analysts’ visual ana-
lytic behavior at fine granularity, with respect to EVA contexts. To
support a “micro-analysis” of visual analysis behavior during EVA,
we focus on specific subtasks that may occur during EVA sessions,
according to our literature review in Section 3.3.

Selecting Visual Analysis Subtasks: We find in Section 3.3
that analysts utilize both a top-down and bottom-up exploration
approach, which often includes performing multiple, focused sub-
tasks. We find that a variety of subtasks are observed during EVA,
including tasks that are not traditionally associated with EVA.
Though the precise order of these subtasks may vary from analyst
to analyst, there does appear to be a common progression through
the different subtask types that maximizes the effectiveness of an
EVA session. First, analysts explore to learn the data’s structure
and semantics, which lays the foundation for understanding more
complex structures and phenomena in the data. Then analysts look
for statistical patterns and relationships between different data vari-
ables. Given a basic understanding of the relationships between
variables, analysts can then move to deeper exploration, tied to

¶ https://wildlife.faa.gov/

more complex subtasks such as causality analysis, forecasting, and
decision making. We treat these visual analysis subtasks as sepa-
rate categories, and design study tasks for each: 1) data quality as-
sessment (T1); 2) evaluation of patterns and relationships between
variables (T2, T3); and 3) causality and prediction analysis (T4,
open-ended). All subtasks are listed in Table 1.

Ordering Subtasks: Given that learning effects are a natural
part of the EVA process — and our aim to study realistic EVA be-
havior — we decided to have all participants complete subtasks in
the same order (T1, T2, T3, T4), dictated by the natural order of
their respective categories. For example, data quality assessment
(T1) is often performed before causality analysis (T4) [KPHH12].

Managing Complexity: To ensure adequate breadth for analy-
sis, multiple factors of complexity were balanced across subtasks:
1) total attributes analyzed per dataset, 2) diversity of attributes
across subtasks (e.g., temporal versus spatial, dimensions versus
measures), 3) relevance of subtasks to real-world equivalents. The
complexity of all subtasks within a category (T1, T2, etc.) were
balanced across the three datasets.

Subtask Durations: Zgraggen et al. asked participants to per-
form open-ended EVA tasks for 15 minutes [ZZZK18], where par-
ticipants wrote down every insight they found. Given our more fo-
cused subtasks and less rigid recording, we chose shorter durations:
7 for the (simpler) subtasks T1-T3, and 9 minutes for the more
open-ended subtask T4. We verified through pilots that these sub-
tasks could easily be completed within these time frames before
conducting the study.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



L. Battle & J. Heer / Characterizing Exploratory Visual Analysis in Tableau

4.5. Data Collection & Processing

Data Sources: We collected raw logs from Tableau Desktop and
Tableau Data Engine (or TDE, an internal database system). Screen
capture was also recorded to contextualize our log analysis. Data
from one participant was removed due to experiment error.

Interactions: All events were extracted from the logs and com-
pared with the screen capture to identify interactions (e.g., add at-
tributes to shelf, change mark type, etc.). These events were then
labeled with established interaction types [HMSA08].

Shelf State and Visual Encodings: Tableau automatically
records shelf state (Row, Column, Filter, and Encoding shelves).
These entries were extracted and then stored with their correspond-
ing interactions in a larger master log (matched via timestamps).

Data Transformations and Queries: Data transformations
were extracted from Tableau shelf state (e.g., sum:snow,
count:damage), as well as TDE logs. Tableau uses a separate
query language to interact with the TDE. We developed a parser
for the Tableau queries to perform the parameter extraction.

4.6. Study Design Limitations

Our study design differs significantly from previous studies of EVA
behavior, which generally preserve the natural structure of entire
exploration sessions, rather than capturing a series of focused sub-
tasks. Our analysis does not capture a completely faithful represen-
tation of EVA, but instead simulates (some of) its individual parts.
Understandably, this design will not allow us to make high-level
inferences about EVA behavior. However, what we lose in con-
textual accuracy (i.e., capturing complete EVA sessions) we par-
tially make up for in precision (i.e., knowing exactly what subtask
is being performed and when). This study design helps us to better
understand specific, low-level behavioral patterns, and the signif-
icance of these patterns within common visual analysis subtasks
that can occur during EVA (as well as other analysis contexts).

We note here that some important aspects of EVA sessions are
still preserved in our design, such as selecting subtasks that occur
during EVA, and imposing a subtask ordering that aims to maxi-
mize the effectiveness of the selected subtasks for EVA contexts.
For example, an analyst will not be able to make sense of relation-
ships between data attributes (subtasks T2 and T3) without first ver-
ifying their understanding of the individual attributes themselves
(subtask T1). Similarly, an analyst will not be able to effectively
make predictions or assess causality amongst data attributes (sub-
task T4) without first identifying and understanding the underlying
relationships between them (subtasks T2 and T3).

5. Task Performance

We report on the accuracy and pacing of study participants, and
compare our results to assumptions in the literature.

5.1. Evaluating Task Completion Rates & Accuracy (P1)

Most participants successfully completed all tasks: Figure 1
shows the fraction of successful completions for tasks T1-T3 (tasks
with measurable correctness). Incorrect answers stemmed from im-
proper analysis, such as failing to consider the low number of long-
distance flights for task FAA T3, or including strike records that do

dataset
birdstrikes1 faa1 weather1

t1
t2
t3

ta
sk

0 10 0 10
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Figure 1: Task performance by dataset, labeled as: correct answer,
incorrect answer, or did not finish (incomplete).
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Figure 2: Total answers observed for each dataset and task, and
the total participants that arrived at each answer.

not actually result in damage for Birdstrikes T2. A small number of
participants had outwardly correct answers (i.e., similar in text as
other participants’), but the observed analysis involved glaring er-
rors; we conservatively labeled these cases as incorrect. Incomplete
answers are cases where the participant ran out of time.

Most participants completed tasks on time. When a task was not
completed, the cause often involved attempts to use complicated in-
teractions, such as sophisticated filters (e.g., FAA task T1) or com-
plicated grouping and binning operations (e.g., Weather task T3).

Participants provided correct answers: Overall, participants
provided accurate responses (Figure 1): 80.6% (116/144) of task
sessions had correct answers. Rates per task were 81.3% (39/48) for
T1, 91.7% (44/48) for T2, 68.8% (33/48) for T3. For each dataset,
over 50% of participants successfully completed all three tasks.

Participants were cautious analysts: We designed two tasks
that asked participants to assess relationships between variables for
which there was no clear correlation (Birdstrikes T3 and FAA T3).
We observe the worst case error rate of 25% in FAA T3: 4 incor-
rect answers out of 16. In all other tasks, ~81% of participants who
complete the task provide correct answers. Though not an exact
comparison, Zgraggen et al. [ZZZK18] observed a 60% false dis-
covery rate when asking participants to explore (i.e., search for)
interesting relationships in the data. We believe the higher accura-
cies in our study stem from our focus on realistic task outcomes
from experienced users, rather than all verbalized open-ended ob-
servations by novices.

Participants regularly compared visualizations with the raw data,
to ensure that the visualizations matched their expectations. Re-
gardless of correctness, participants qualified their answers with
comments on their confidence in the rendered results. For task FAA
T3, five participants made comments suggesting a distrust of look-
ing only at their visualizations, including one participant who had
given an incorrect answer. Two participants said that their hypothe-
ses required further study, two participants commented on the dis-
parity in available data between short and long distance flights, and
one participant said the delays for long distance flights did not look
“quite right.” One participant described how “Just by looking, one
might be tempted to say higher distance lower delay, but I wouldn’t
say that because there’s more data for shorter delays,” showing the
cautious evaluation style adopted by many participants.

Most participants arrive at the same answers: Figure 2 shows
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Figure 3: Mean interaction rates and 95% CIs of the mean.
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Figure 4: Mean think times, with 95% CIs of the mean.

the total unique answers observed for tasks T1-T3. We observed 1-
4 answers per task. Most participants arrive at the same answer. For
example, in the Birdstrikes T1 task, 15 participants conclude that
the wing or rotor of aircraft are damaged most often during strikes.
In the FAA T3 task, 10 participants conclude that there is no clear
relationship between distance and arrival delays.

5.2. Evaluating Pacing: Interaction Rate & Think Time (P2)

We observe similar interaction rates across tasks: To assess the
effects of task on interaction rate, we fit linear mixed effects mod-
els, with task as a fixed effect, and participant and dataset as random
effects. We test significance by comparing the full model to a “null”
model with the target fixed effect removed (task), using likelihood-
ratio tests. Figure 3 plots expected mean interaction rates and 95%
confidence intervals. We do not find a significant effect of task on
interaction rates (χ2(3,N = 192) = 2.194, p = 0.533). Thus, inter-
action rates appear to be independent of task type.

Think times are long: An ambitious goal for EVA systems is
to support interaction at the “speed of human thought” [HS12,
CGZ∗16]. We seek to better understand the pacing of visual anal-
ysis tasks that occur during EVA, where several projects seem to
argue that EVA is generally fast-paced [GZ09, BCS16, FPDs12].
Many systems, particularly from the database community, pro-
pose specialized optimizations to improve performance under con-
strained pacing conditions (i.e., short time between interactions, or
think time [BCS16]). However, the “speed of thought” might in-
volve spans of viewing data, drawing comparisons, and planning
next steps. If ample time is available between interactions for data
pre-processing, complicated (e.g., predictive) optimizations may
not be needed: we can use these think times to deploy simpler op-
timizations and achieve similar results.

Rendering times and query times in Tableau represent a small
fraction of the time between interactions (1% and 14%, respec-
tively). Thus the majority (85%) of this (think) time can be at-
tributed to users (e.g., interpreting visualizations, selecting an in-
teraction, etc.). We operationalize think times as the time from the
end of the current interaction to the start of the next one, subtracting
query and rendering times. Figure 4 shows mean think time across
tasks. The means are notably high, ranging from 14 to 15 seconds,
depending on the task. Median think times are 5-7 seconds, indicat-
ing skew. Depending on task, we find that 53-61% of think times
are 5 seconds or longer, and 32%-41% are 10 seconds or longer.

Next we consider the mean think times preceding each inter-
action type (Figure 5a), which generally fall in the 10-20 sec-

ond range. Median think times range from 4.7 (undo) to 29 sec-
onds (data-derive). From our study observations, we find that
data-derive is of high cognitive complexity, because it in-
volves reasoning about and writing formula expressions. The gap
between data-derive and other interactions shows that differ-
ences in cognitive complexity can directly impact the pacing of
EVA. Lam also finds that high cognitive complexity leads to high
interaction costs [Lam08], but refers specifically to selecting from
a large space of possible interactions. We find that particular in-
teractions with high complexity also lead to high interaction costs.

Consider the ForeCache system [BCS16] discussed in Sec-
tion 3.4, which predicts the user’s next interaction and fetches the
corresponding data. Fetching data in ForeCache takes about 1 sec-
ond, and users can perform 9 interactions (4 panning and 5 zooming
directions). Suppose we observe similar interaction rates as Tableau
(median navigation think time is 9 seconds). Without special opti-
mizations, we could simply pre-fetch the data for all 9 potential
interactions, one at a time, and with high probability fetch the re-
quired data before the user’s next interaction. Though hypothetical,
this example shows that without the full context of latency and pac-
ing, we may devise unrealistic performance constraints for EVA.

Interactions appear “bursty”: We find that participants oscil-
late between spending relatively more time choosing an interaction,
then less time on a subsequent sequence of interactions. Figure 5b
shows the observed think times for the FAA T4 task, with relatively
short think times in light blue, and longer think times in dark blue
(i.e., below or above the mean think time for FAA T4, respectively).
Shorter think times appear to be clustered together, which we ob-
served across tasks, with participants performing on average 3-4
fast interactions per sequence. These results may suggest that ana-
lysts formulate a plan for the next few interactions (i.e., a subtask),
and then execute their plans, before deciding what to analyze next.

6. The Structure of Analysis Sessions

We now analyze the structure of participants’ analyses and compare
with existing structural assumptions.

6.1. Defining Analysis States & Search Trees

As defined by Wongsuphasawat et al., an analysis state is the set
of attributes currently being analyzed [WMA∗16b, WQM∗17], for
which a user may specify visual encodings, apply filters, or group
and aggregate the data. Interactions with Tableau can add to, re-
move from, or otherwise modify the current attribute set, producing
new analysis states. We first construct a raw graph of all states and
interactions Each time a participant adds a new attribute to the cur-
rent visualization, a forward edge is included in the raw graph from
the current attribute set to the new (larger) attribute set. When at-
tributes are removed, a backward edge is included in the graph from
the current attribute set to the new (smaller) set. We then remove
the backward edges and self-loops to form search trees. Figure 6a
shows the raw graph for one participant from task Weather T4. We
create a new state for each observed attribute set, and a directed
edge between corresponding states for each interaction. Edge color
encodes interaction type, and width repeated interactions. Figure 6b
shows an example search tree.
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Figure 5: (a) Means and 95% confidence intervals for think time before each interaction (left), and total records per interaction type (right).
(b) Observed think times for FAA T4, colored light blue when below mean think time, dark blue when above the mean.
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Figure 6: Raw graph (a) and matching search tree (b) for one participant, task Weather T4. (c) Distribution of tree aspect ratios.

6.2. Breadth- Versus Depth-Oriented Analysis (S1)

Wongsuphasawat et al. define depth and breadth in terms of the
total unique states analyzed [WMA∗16b, WQM∗17] (also consid-
ered by Sarvghad et al. [STM17]). However the interactions that
produce these states, and thus the states themselves, are not in-
dependent. As we find in Section 3.3, interactions are part of a
larger, hierarchical process, where they may be clustered together
within a subtask (i.e., an analysis branch within a search tree). We
extend these definitions of depth and breadth to consider the full
EVA structure (i.e., search trees): branches in the tree correspond
to breadth in subtasks or analysis trajectories, tree depth to effort or
emphasis (i.e., total interactions) for a specific (sub)task. Greater
breadth indicates that a participant more frequently backtracked to
previous states and then branched off, greater depth indicates that a
participant engaged in less backtracking.

Sessions are primarily depth-oriented: Branching to different
sub-analyses (i.e., subtasks) was fairly common. Branches trans-
late to leaves in the search trees (e.g., nodes 3, 7, and 9 in Fig-
ure 6b). 51.0% (98/192) of trees have multiple branches (i.e., > 1
leaf), and 25/26 participants had multiple branches in at least one
task. Figure 6b shows the two forms of branching we observed in
Tableau: 1) within-sheet branching, and 2) between-sheet branch-
ing (e.g., creating sheets, returning to previous sheets). With the
first form of branching, the user makes small pivots from the cur-
rent analysis state (e.g., removing one of the current data columns
being analyzed). To assess whether search trees tend to be depth-
or breadth-oriented, we calculate an aspect ratio: we divide a tree’s
width (max breadth) by its height (max depth). Figure 6c shows
the distribution of aspect ratios, which consistently have aspect ra-
tios below one, showing greater depth than breadth. These findings

are consistent with Wongsuphasawat et al.’s claims that analyses in
Tableau are primarily depth-oriented [WMA∗16b, WQM∗17].

6.3. Predictability & Overlap (S2)

We assess the predictability of EVA by measuring structural sim-
ilarity between sessions, which could indicate likely outcomes for
a given task, or relevant interaction patterns, such as iteration. We
compute similarity in two ways: 1) overlap in states visited across
participants and 2) revisitation of states (i.e., self-loops, iteration).

Certain states show high overlap: Figure 7a shows a binned
chart of overlaps, where the bins along the x-axis represent the to-
tal participants that visited each state in the given bin (i.e., blue cir-
cle). Circle area encodes the total unique states that had exactly x
visitors, for each task (y-axis) and dataset (columns). For example,
relatively large circles in the far left column (per datasets) means
that most states were visited by only 1 participant. For task T4
we observe a steep drop-off, with only a few states being seen by
most users. Tasks T1 and T3 exhibit more multi-modal distribu-
tions, with one cluster of states that only a few people visit, and
another where many people see the respective states.

To further quantify overlap, we calculate a binary histogram of
visited states per participant, where each bin represents a unique
state, and the bin is set to 1 if this state was visited. We compare
pairs of participants using a modified version of Jaccard similarity:

|A∩B|
min(|A|,|B|) .

This measure avoids penalizing pairings where one participant vis-
ited many more states. The average similarity is as follows: T1
(0.56), T2 (0.61), T3 (0.57), T4 (0.22). We find high average over-
lap in T1-T3, suggesting somewhat predictable analysis steps or
outcomes. Average overlap is lower for T4. As we discuss in greater
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detail later, we believe this is related to participants taking a high-
level goal (T4) and decomposing it into focused subtasks.

Overlapping states align closely with task goals: We compute
the top 3 overlapping nodes for each dataset and task, and compare
them to participants’ task goals (as indicated by task prompts). We
observe that these states subsume the columns needed to complete
the task for 8 of 12 tasks. Thus participants tend to overlap at the
key states needed to complete a task. These particular nodes often
appear later within the search trees (i.e., close to or as leaf nodes).
For example, the top 3 overlapping states for each task appear as
leaf nodes up to 30% of the time, depending on the task.

Self-loops signal key analysis states: Participants frequently it-
erate on the same analysis state, forming self-loops in the resulting
graphs. 39.1% of all states have self-loops. We also find at least 1
self-loop in 95.8% (184/192) of analysis graphs. Most self-loops
involve data transformations (42.2% of all self loops), followed by
shelf (29.2%) and formatting (10.7%) interactions. Most shelf in-
teractions involve moving the current attributes to different shelves.
Self-loops highlight states where participants place more analysis
effort, showing that this state may be a useful landmark within an
EVA session. We computed the fraction of observed self-loops per
state, participant, dataset, and task. We then summed the results per
state, across all participants. In 11 of 12 tasks, at least one of the
top 3 self loop-states also appears in the top 3 overlapping states.
Thus self-loops serve as indicators of significant analysis states.

6.4. Open-Ended Versus Focused Analysis (S1, S2)

Specificity does not affect relative breadth/depth: We evalu-
ate the effects of task on tree dimensions by fitting linear mixed-
effects models on the normalized max depth and breadth of the
trees (i.e., divided by tree size). We include task as a fixed ef-
fect, and participants and dataset as random effects. We compare
with a “null” model (i.e., with task removed) using likelihood-
ratio tests, and do not find significant effects of task on normal-
ized max depth (χ2(3,N = 191) = 4.878, p = 0.181) or breadth
(χ2(3,N = 191) = 2.495, p = 0.476). Figure 7 shows means and
95% confidence intervals. Our results indicate that open-ended and
focused sessions are structurally similar in depth and breadth.

Open-ended tasks may decompose into focused tasks: On the
surface, open-ended structures appear to diverge. For example, T4
has lower average modified Jaccard similarity (see Section 6.3).
However, this analysis misses the hierarchical nature of more open-
ended tasks, and of exploration in general, discussed in Section 3.2:
participants likely decompose T4 into focused subtasks to make it
more manageable. Individual subtasks could be characterized and
compared to obtain a more accurate similarity measure, which we
plan to investigate in the future.

7. Findings & Future Work

In this paper, we explore existing definitions of EVA, and iden-
tify three major themes in the literature: goal formulation, explo-
ration structure, and performance. Within these themes, we high-
light points of connection and contradiction, from which we for-
mulate research questions for further study: organization (S1), pre-
dictability (S2), accuracy (P1), and pacing (P2) in EVA. We present
a study in which 27 Tableau users completed a range of analysis

tasks across 3 datasets, informed by our literature review. We use
the resulting data to provide empirical context towards answering
these research questions; our results provide useful insights that
may help to inform future analyses and system evaluations.

We find that many implicit assumptions are made about EVA
across the literature. EVA is often referenced, but rarely defined
(with notable exceptions, e.g., [AZL∗19, jJKMG07]). Lam et al.
observe a similar dearth of explicit information on EVA [LTM18].
We hope that this work will help to motivate our community to
rethink the way we perceive, design, and evaluate in EVA contexts.
7.1. Analysis Performance

Most participants successfully completed the tasks, with error
rates of at most 25% per task. Our results differ from prior
work [ZZZK18], which report error (false discovery) rates over
60% for participants assessing data properties and relationships.
Though not a perfect comparison, these differences could be at-
tributed to several factors. We provided specific tasks rather than
encouraging more vague open-ended explorations; that structure
may have helped to focus participants. Unlike earlier insight-based
evaluations (e.g., [GGZL16, ZZZK18, LH14]), we did not require
participants to vocalize all “insights” as they went along, regard-
less of overall relevance. Again, our participants were typically fo-
cused on a specific goal. We plan to evaluate how the articulation of
specific questions and goals — structuring open-ended exploration
into more explicit, albeit evolving, tasks — may affect analysis out-
comes in other contexts. While both our study and that of Zgraggen
et al. involved analyzing unfamiliar data, our study involved users
with prior analysis experience in real-world environments, rather
than a novice, student-only population. This difference in experi-
ence may have helped our participants exercise caution.

Insight (P1): Analysts tend to approach analysis tasks with care,
as well as a priori goals and hypotheses, which may lead to better
outcomes for analysis subtasks completed during EVA contexts.

Latency is a key performance metric for evaluating EVA sys-
tems. However, the pace of EVA may be characterized unrealisti-
cally in parts of the literature [GZ09, BCS16, FPDs12], to further
constrain (and sometimes complicate) system optimization con-
texts. We observe 14-15 seconds on average of idle time or think
time between interactions, resulting in a slower pace for EVA, and
providing ample time for simpler optimization methods to be de-
ployed with presumably similar performance results. We measured
think times for different interaction types and found similar results,
with one exception: data-derive interactions take longer to reason
about, resulting in longer think times. We also observe “bursty” in-
teraction patterns, where analysts repeatedly have a longer think
time (presumably planning next steps), followed by a sequence of
shorter think times (i.e., plan execution). With a better understand-
ing of pacing, we can construct more realistic evaluations, and test
large-scale EVA systems with appropriate parameters.

Insight (P2): EVA system optimizations should consider not only
latency, but also pacing and available resources, like think time.

7.2. Analysis Goals and Structure

Participants’ analyses were primarily depth-oriented, validating
previous calls to prompt greater exploration breadth [WMA∗16b,
WQM∗17]. We found strong similarities in interaction rates, task
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Figure 7: (a) Counts of users that overlap per state. Means and 95% confidence intervals for normalized max (b) breadth and (c) depth.

answers, and relative breadth and depth across tasks, suggesting
analysts use similar analysis strategies, regardless of task.

Insight (S1): Analysis search trees in Tableau are primarily depth-
oriented, and consistent across subtasks of varying specificity.

Individual differences between analysts could result in differ-
ences in EVA strategies and performance [ZOC∗12], affecting the
predictability of EVA behaviors. Our results hint towards a com-
plex picture of predictability in analysis tasks in general. Strong
overlap and predictable patterns do emerge, but in specific situa-
tions, often when the analysis becomes more focused, such as dur-
ing more focused subtasks, towards the end of a subtask, or during
iteration (i.e., self-loops in analysis graphs). Significant overlap in
states visited across participants usually represented critical points
in participants’ analyses, where they were close to achieving task
goals. Consecutive interactions within a state (i.e., self-loops) also
correlate with critical analysis points. Less overlap was observed
in more open-ended tasks, however our selected metrics may ob-
scure participants’ decomposition of open-ended subtask prompts
into even smaller subtasks, requiring further study. These results
could inform the design of EVA behavior models learned from
log data, and help to generalize existing modeling techniques (e.g.,
[BCS16, BOZ∗14b, DC17]) for EVA contexts.

Our results differ from past studies of broader EDA con-
texts [SU15]. However a variety of techniques beyond the scope of
EVA are utilized, and teams, not individuals, perform the analysis.

Insight (S2): Predictable patterns do occur during analysis sub-
tasks associated with EVA, but at specific points within analysis
sessions in Tableau.

7.3. Study Design and Analysis

Our study design enables evaluation of visual analysis be-
havior along multiple axes: task specificity, performance,
and structure, as well as others like interaction and en-
coding types. We contribute our data as a community re-
source for further study at https://github.com/leibatt/
characterizing-eva-tableau.

Significant manual effort was required to analyze native Tableau
logs. A standardized process for curating system logs would greatly
simplify the evaluation process, enable a variety of evaluations
(e.g., meta-analyses, performance benchmarks), and improve re-
producibility/comparability of results [BCHS17, BAB∗18, E∗16].

Though our study incorporates core (but decomposed) charac-
teristics of EVA contexts and tasks, analysts still behave differ-
ently when in their own work environments (e.g., software tools,
datasets, etc.), making it challenging to capture authentic EVA be-
havior in a controlled setting. It would be beneficial to repeat this

study to evaluate how assumptions and insights change under dif-
ferent EVA contexts.

Our analysis does not examine differences between the analy-
sis patterns of novice and expert analysts, a potentially interest-
ing topic for future study. Furthermore, our focus on a single tool
makes it difficult to distinguish between general and tool-specific
analysis patterns. We hope to extend our study to other tools to bet-
ter understand the influence of tool design on analysis behavior.

8. Conclusion

Exploratory visual analysis (EVA) is often considered a critical use
case for visual analysis tools, however our understanding of EVA
is arguably vague and incomplete. We sought to provide a more
holistic view of how EVA is discussed across the literature, sum-
marize and define EVA based on our observations, and to provide
additional context for how analysts behave when performing EVA
(sub-)tasks identified from the literature. We contribute a definition
of EVA synthesized from a literature review of 42 research articles,
as well as an empirical evaluation of several assumptions about how
EVA is performed. We present the results of a user study with 27
Tableau users. Through a quantitative analysis of Tableau log data
from the study, we evaluate multiple facets of task performance and
analysis structure. We find that participants achieve over 80% ac-
curacy across focused tasks with measurably correct answers. We
find that the pacing of participants’ analyses was surprisingly slow,
compared to common performance assumptions observed in the lit-
erature. We find clear patterns and overlap across participants’ anal-
ysis sessions, suggesting that some predictable behaviors do occur
during tasks commonly associated with EVA. Furthermore, we find
few differences between how more focused and more open-ended
analysis tasks are structured. These findings suggest that analysts
can be steady, cautious explorers, and that EVA may often contain
familiar patterns and structures, helping us to build a more com-
prehensive view of visual analysis in the context of exploration. In
the future, we aim to extend our analysis to better understand how
differences in tool design (i.e., beyond Tableau) and analysts’ ex-
perience may affect analysis performance, patterns, and structure.
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