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Q: Why is Priestley usually given credit for 
being first to discover oxygen?

...Because he published his findings first, Prestley is 
usually given priority in the discover.

Figure 18: A “why” question where the model ignored
the apparent hint “because.”

small substring of the prediction (with multiple
unnecessary tokens on both ends). Meanwhile,
“what” questions have relatively shorter predic-
tions. He hypothesized that reframing “why” to
“what” questions could result in reasonable pre-
diction lengths, and created a rule rewrite(q,
"Why VERB"→"What is the reason that")
to confirm it. Out of 151 rewritten instances,
46 had shorter predictions, and 6 had longer
ones; the remaining instances had unchanged
predictions. Out of the 19 instances where
F1 improved after the rewrite (apply(f1(m),
rewrite="why to what") > f1(m)), 13 had
the prediction shortened to approximately the
correct ground truth answer.

P2 found the example in Figure 18 and chose
a different angle. He was surprised to see the
incorrect prediction, when the ground truth con-
tained the word “because”, which should make the
prediction easier for BiDAF. Grouping all “why”
questions with a "because" in their context:

question type(q) == "why"

and has pattern(c, pattern="because")

1
2

he found most instances still had a predic-
tion following "because", and that removing
"because" from the context made predictions
worse. He confirmed that “because” was indeed
an essential signal. The prediction in Figure 18 re-
mained the same, and P2 therefore hypothesized
that aggressive pattern matching affected this in-
stance, as all the words surrounding the predic-
tion “priority” were in the question. He was
also surprised that there were only 40 instances in
the because group, and suggested more labeling
might easily help bump up the performance.

The two participants explored complementary
angles on “why” question, suggesting the value of
collaborative sharing among Errudite users.

B Programming-by-Demonstration

To help users express their intent, Errudite sup-
ports programming by demonstration (PBD) (Gul-
wani and Jain, 2017), a well-recognized technique

Q: Who created the 2005 theme for Doctor Who?
...John Debney created a new arrangement of Ron 
Grainer’s original theme for Doctor Who in 1996. For the 
return of the series in 2005, Murray Gold provided a new 
arrangement...  featured sampled from the 1963 original.

Figure 19: The illustrating example we used in the pa-
per; we repeat it here to explain our programming-by-
demonstration heuristics. The scenario here assumes
“John” is selected by a user.

for synthesizing targeted programs from specific
examples. It has been widely applied to tasks like
data wrangling (Kandel et al., 2011) and text edit-
ing (Lau et al., 2003). Here, we explain the heuris-
tics used for ranking query suggestions and ex-
tracting rewrite rules.

B.1 Query Ranking

Pattern Re Cd Su

"NNP" 27.1% 35.7% 1.90
"PERSON" 22.1% 10.3% 0.56
"john" 20.1% 0.4% 0.40

"how many ADJ" 62.9% 0.6% 1.27
"ADV ADJ ADJ" 62.5% 0.7% 1.26

Table 2: Patterns and their associated usefulness in Fig-
ure 19 (top 3 lines) and Figure 10 (bottom 2 lines)

.
As users interact with instances, Errudite de-

tects and returns potential queries that can as-
sist generalization from a single observation to
a larger set. As running examples, we explain
our query ranking methods assuming “John” is se-
lected in Figure 19, and “How many brownish” is
selected in Figure 10. There are three broad types
of suggestions with different granularity. To en-
sure diversity, our suggestions cover at least one
query from each type, and the inter-type sugges-
tion ranking will always be as the following:

Span-related suggestions closely relate to the
specific token(s) selected (“John” in Figure 19).
The most typical span-related suggestions are pat-
tern searches. We generate a list of possible lin-
guistic patterns from the cross-product of raw to-
ken text with POS tags (coarse for multiple tokens,
and fine-grained for single tokens), as well as the
entity type (if any). The resulting possible pat-
terns for “John” are "John", "NNP", "PERSON".
Similarly, in Figure 10, “how many brownish”
results in "how many brownish", "how many
ADJ", "ADV ADJ ADJ", etc. The functional pred-
icate used differs if the selected span lies at the be-
ginning, middle, or end of a target (start with,
has pattern, and end with).

Target-related suggestions are based on the



761

target under inspection. For instance, we
return question type when a user interacts
with the question (q) in Figure 10. A
prediction (p) as in Figure 19 will instead
trigger different levels of comparisons with
the ground truth, including accuracy checks
(exact match and is correct sent), answer
type comparisons (ENT(p) == ENT(q)), answer
offsets (answer offset delta) and sentence
level comparisons (overlap):
answer type(g) == answer type(p(m))

exact match(m) == 0

is correct sent(m) == False

overlap(q, sentence(p(m))) >

overlap(q, sentence(g))

1
2
3
4
5

Instance-level suggestions are conventional at-
tributes that domain experts often find useful. For
example, performance, question type, and answer
type are considered the most important “instance”
suggestions if they are not triggered by the target-
related suggestions. In addition, lengths of inputs
also belong to this suggestion type.

To perform intra-group ranking, we precompute
the resulting groups for each candidate suggestion,
and rank their in-group error rate Re and dataset
coverage Cd, maximizing a usefulness score:

Su =
Re

|Cd − 50%|
(1)

Intuitively, Re measures group difficulty. We
would like to prioritize patterns that will return
subsets that are not well-handled on average, re-
sulting in high in-group error rate. The |Cd−50%|
term, on the other hand, ensures reasonable cover-
age. We prioritize groups that lean towards 50%
coverage of the entire validation set, so to penalize
patterns that cover too few instances to be signif-
icant, or those covering too many instances that
essentially return the entire dataset. Taking the
ranking of span-related suggestions as an example,
candidate patterns for Figure 19 and Figure 10,
and their scores Su, are shown in Table 2.

B.2 Rewrite Rule Extraction
When a source x is edited to x′, we propose a set
of rules R = {r1, ..., rm} in the same manner as
Ribeiro et al. (2018): we test the exact matching,
and select the minimal contiguous sequence that
turns x to x′, with their immediate contexts and
linguistic features. While Ribeiro et al. (2018) use
only text and POS tags, we further extend to in-
clude entity types.

Who What person created the 2005 theme for Doctor Who?

Figure 20: Rewrite rules inferred from an edit on an
individual instance.

Then, we apply every rule in the candidate
set onto a random subset of instances S =
{s1, ..., sn}, n = 100. Similar to Ribeiro et al.
(2018), we prioritize rules that have (1) high
coverage and (2) low redundancy, while loos-
ening their constraint on semantic equivalence:
rules resulting in different semantics are still valid
in our error cause testing context. In addition,
we heuristically score the linguistic features used
based on their specificity: we consider raw text
the most specific, POS tag the least, and penal-
ize rules that are too general and abstract (as
they are likely to result in unexpected changes).
For example, in addition to the rules reported in
Figure 20, an additional rule found in the can-
didate set from “Who” to “What person” was
"NOUN"→"What person". By editing random
NOUNs, this rule will have high coverage, but
our specificity score weights it down enough that
"Who"→"What person" is ranked more highly.
We then report the five highest-ranked candidate
rules to the user.

C Survey: Error Analysis Sample Sizes

Table 3 lists the 10 papers we surveyed to inspect
the scale of the status quo error analysis practice.
Papers are randomly selected from top tier confer-
ences, and either develop novel MC models (our
primary test case), or focus on error analysis.

Paper Sample size
(Seo et al., 2016) 50

(Kundu and Ng, 2018) 50
(Hu et al., 2018) 50
(Min et al., 2018) 50

(Weissenborn et al., 2017) 55
(Chen et al., 2016) 100
(Min et al., 2017) 100

(Wadhwa et al., 2018) 100
(Fader et al., 2013) 100

(van Aken et al., 2018) 200
Average 85.5

Table 3: Surveyed papers and their error sample sizes.
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D DSL Documentation

Here we list the functions defined in our domain-specific language for MC and VQA.

Converters and Targets
Get targets: These targets contain text spans post-processed with state-of-the-art POS taggers, lemma-
tizers and NER models, along with metadata such as example id, or (in the answer case) the model that
generated it. When additional metadata is not used, Target can be treated just as Span in a function, or
a piece of text with its linguistic features.

1. question|context|groundtruth→Target: Automatically query the target object (Question
and Answer in VQA and MC, as well as Context in MC).

2. prediction(model:str)→Target: Get the prediction object of a given model.

Converters that extract sub-spans, short phrases, or sentences from targets.
1. token(span:Span,idxes:int|int[],pattern:str)→Token|Token[]: Get a list of tokens

from the target based on idxes (sub-list) and pattern (in the form of, for example, "(what,
which) NOUN)". pattern automatically detects queries on POS tags and entity types.

2. sentence(target:Target,shift:int|int[])→Span: [MC only] Get the sentence that con-
tains a given answer. Shift indicates if neighboring sentences should be included. If shift==0,
then the actual sentence is returned; if shift==[-2,-1,1,2], then the four sentences surrounding
the answer sentence are returned.

General Computation
1. apply(func:Callable,rewrite:str)→any: Applies query functions to instances rewritten by

the named rule rewrite.
2. abs(num:float|int)→float|int: Returns the absolute value.
3. truncate(num:float|int, min value:float|int, max value::float|int)→float|int:

Clamps a given number to a given domain.
4. is digit(input:any)→bool: Determines if an input is a number, or – in the case of a string

input – if it can be parsed into a number.
5. digitize(input:any)→float|int: Parses an input into a number if is digit(input) ==
True; Otherwise returns None.

6. length(span:Span)→int: The length of a given span, in tokens.
7. [has any|has all](container:Span,contained:Span)→int: Determines whether one list
container contains any (or all) of the members present in another lists.

8. count(vars:list)→int: Count the number of members in the input list.
9. freq(target:Target,target type:str)→str: Returns the frequency of a token occurring in

the training data, given a target type ("question" or "answer" in MC; However, freq can be on
other targets given other tasks).

Linguistic Attributes
1. [LEMMA|POS|TAG|ENT](span:Span,get root:bool,pattern:str)→str|str[]: Return

the specified linguistic feature of a span with one more more tokens. If pattern is specified (the
same as in token), gets the sub-list of spans in the span list. If get root==True, gets the single
linguistic feature of the “primary” token, or the one within the ground truth span that is highest in
the dependency parsing tree.

2. STRING(span:Span)→str: Get the raw string from a given span.
3. [has pattern|starts with|ends with](span:Span,pattern:str)→bool: To determine

whether the targeted span contains a certain pattern.

Performance Metrics
1. [f1|exact match|precision|recall|accuracy|confidence](model:str)→float: Get

the specified performance metric for one instance, given the selected model. Confidence is for
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both QA and VQA, which is usually the model prediction probability. Accuracy is for VQA, and
the others are for QA.

2. is correct sent(model:str)→bool: [MC only] Determine if the given model locates the sen-
tence with the ground truth, regardless of span-level correctness.

Between-target Relations
1. overlap(span1:Span,span2:Span,pattern:str)→float: A directional overlapping: re-

turns the ratio of tokens in span1 that also occur in target2. If pattern is provided, it is used
to filter to matching tokens in span1 and target2. For example, if pattern=="NOUN", then the
overlap will only be on tokens with a NOUN tag.

Domain-Specific Attributes
1. question type(question:Target)→str: Returns the question type: either the WH-word or

the first word in a sentence.
2. answer type(answer:Answer)→str: Returns the answer type, computed based on TREC (Li

and Roth, 2002) and the named entities of the answer. Returns one of the following: ABBR, DESC,
ENTY, HUM, LOC, NUM.

3. answer offset delta(prediction:Answer, direction:str)→int: [MC only] Compute
the offset between prediction and ground truth in the left or right direction. Returns the position
difference.

4. answer offset span(prediction:Answer, direction:str)→Span: [MC only] Compute
the offset between prediction and ground truth in the left or right direction. Returns the actual
span(s).

5. dep distance(answer:Answer,pattern:str)→float: [MC only] Dependency distance be-
tween a key question token and the answer token. The key is computed by finding tokens that do
not occur frequently in the context and is not far from the given answer. Pattern fixes the keyword
linguistic feature.


