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Data analysis requires translating higher level questions and hypotheses into computable statistical models.
We present a mixed-methods study aimed at identifying the steps, considerations, and challenges involved
in operationalizing hypotheses into statistical models, a process we refer to as hypothesis formalization. In a
formative content analysis of 50 research papers, we find that researchers highlight decomposing a hypothesis
into sub-hypotheses, selecting proxy variables, and formulating statistical models based on data collection design
as key steps. In a lab study, we find that analysts fixated on implementation and shaped their analyses to fit
familiar approaches, even if sub-optimal. In an analysis of software tools, we find that tools provide inconsistent,
low-level abstractions that may limit the statistical models analysts use to formalize hypotheses. Based on
these observations, we characterize hypothesis formalization as a dual-search process balancing conceptual and
statistical considerations constrained by data and computation and discuss implications for future tools.
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1 INTRODUCTION
Using statistics to answer real-world questions requires four steps: (i) translating high-level, domain-
specific questions and hypotheses into specific statistical questions [16]; (ii) identifying statistical
models to answer the statistical questions; (iii) implementing and executing these statistical models,
typically with the help of software tools; and (iv) interpreting the results, considering the domain-
specific questions and applying analytical reasoning.

For example, suppose a census researcher asked, “In the United States (U.S.), how does an
individual’s sex relate to their annual income?” Drawing upon their prior experiences and exploratory
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Fig. 1. Definition and overview of the hypothesis formalization steps and process.
Hypothesis formalization is a dual-search process of translating a conceptual hypothesis into a statistical model
implementation. Blue indicates steps and transitions that we identified. Black indicates steps and transitions
discussed in prior work. “Mathematical Equation” (dashed box) was rarely an explicit step in our lab study but
evident in our content analysis. Our findings (blue arrows) corroborate and subsume several of the transitions
identified in prior work with greater granularity. When they do not, prior work’s transitions are included in
black. For example, analysts may operationalize a conceptual hypothesis as a causal model (found in prior work,
see Figure 2) by first decomposing the conceptual hypothesis into sub-hypotheses and then identifying proxy
variables to incorporate in a causal model (blue arrows above). Our definition of hypothesis formalization is
a consequence of our synthesis of prior work, content analysis, lab study, and analysis of tools. Hypothesis
formalization is a non-linear process. Analysts iterate over conceptual steps to refine their hypothesis in a
hypothesis refinement loop. Analysts also iterate over computational and implementation steps in a model
implementation loop. Data collection and data properties may also prompt conceptual revisions and influence
statistical model implementation. As analysts move toward model implementation, they increasingly rely on
software tools, gain specificity, and create intermediate artifacts along the way (e.g., causal models, observations
about data, etc.).

data visualizations, the researcher knows that income in the U.S. is skewed, and they want to
know how the distributions of income among males and females differ (step i). However, before
implementing, they (implicitly) define their causal model: The researcher knows that other factors,
such as education and race, may be associated with employment opportunities, which may then
influence income. As such, they refine their conceptual hypothesis to consider the possible effects of
race, education, sex, and their interactions on income. They plan to fit a generalized linear model
with race, education, sex, and their two-way interactions as predictors of income (step ii). They start
implementing a script to load and model data (step iii). The researcher receives a small table of
results and is surprised to receive a convergence warning. After further investigation, they simplify
their model and remove the interaction effects to see how that may affect convergence (revise step
iii). This time, their model’s inference algorithm converges, and they interpret the results (step iv),
but they really want to study how sex and race interact, so they return to implementation (step iii) and
proceed as before, iteratively removing and adding effects and changing computational parameters,
and as a by-product shifting which high-level conceptual hypothesis is reflected in the model.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Hypothesis Formalization: Empirical Findings, Software Limitations, and Design Implications 1:3

Performing statistical data analysis goes well beyond invoking the correct statistical functions in a
software library. Analysts, such as the census researcher, must go back and forth between conceptual
hypothesis and model implementation realities, grappling with domain knowledge, limitations of
data, and statistical methods.

We refer to the process of translating a conceptual hypothesis into a computable statistical model
as hypothesis formalization. This process is messy and under-scrutinized in prior work. Consequently,
we investigate the steps, considerations, challenges, and tools involved. Based on our findings, we
define hypothesis formalization as a dual-search process [43] that involves developing and integrating
cognitive representations from two different perspectives—conceptual hypotheses and concrete
model implementations. Analysts move back and forth between these two perspectives during
formalization while balancing conceptual, data-driven, statistical, and implementation constraints.
Figure 1 summarizes our definition and findings. Specifically, the paper addresses the following
questions to develop our definition of hypothesis formalization:

• RQ1 - Steps: What is the range of steps an analyst might consider when formalizing a
hypothesis? How do these steps compare to ones that we might expect based on prior work?

• RQ2 - Process: How do analysts think about and perform the steps to translate their hypotheses
into model implementations? What challenges do they face during this process?

• RQ3 - Tools: How might current software tools influence hypothesis formalization?

To sensitive ourselves to the steps (RQ1 - Steps) and considerations (RQ2 - Process) involved
in hypothesis formalization, we compared and contrasted existing models and descriptions of data
analysis in prior work. We augmented our deep dive into prior work with a formative content
analysis of 50 randomly sampled research papers from five different venues, including Psychological
Science and Nature. We find that researchers decompose their research hypotheses into specific
sub-hypotheses, derive proxy variables from theory and available data, and adapt statistical analyses
to account for data collection procedures. A key takeaway from prior work and the formative content
analysis was the “hypothesis refinement loop” in Figure 1.

To validate and deepen our understanding of hypothesis formalization (RQ1 - Steps and RQ2 -
Process), we designed and conducted a lab study in which we observed 24 analysts develop and
formalize hypotheses in-situ. We find that analysts foreground implementation concerns, even when
brainstorming hypotheses, and try to fit their hypotheses and analyses to prior experiences and
familiar tools, suggesting a strong influence of tools (RQ3 - Tools). Thus, the lab study reinforced
the hypothesis refinement loop, surfaced the “model implementation loop,” and raised questions
about the role of tools.

To identify how tools may shape hypothesis formalization (RQ3 - Tools), we reviewed 20 statistical
software tools. We find that although the tools support nuanced model implementations, their low-
level abstractions can focus analysts on statistical and computational details at the expense of higher-
level reasoning about initial hypotheses. Tools also do not aid analysts in identifying reasonable
model implementations that would test their conceptual hypotheses, which may explain why analysts
in our lab study relied on familiar approaches, even if sub-optimal. Furthermore, our tools review
confirmed that the dual processes inform one another during hypothesis formalization.

Taken together, our findings help us define the hypothesis formalization framework, as summarized
in Figure 1, and suggest three design implications for tools to more directly support hypothesis
formalization: (i) show the relationships between related statistical models that seem syntactically
different from each other, (ii) provide higher-level abstractions for expressing conceptual hypotheses
and partial model specifications, and (iii) develop bidirectional computational assistance for authoring
causal models and relating them to statistical models.
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Fig. 2. Relationship between hypothesis formalization and prior work.
Left: Schunn and Klahr’s four-space model of scientific discovery (stylized adaptation from Figure 1 in [72]),
which includes unidirectional information flow from the hypothesis space to the paradigm space (which includes
model implementation). Hypothesis formalization (A) is focused on a tighter integration and the information
flow between hypothesis and paradigm spaces. Specifically, the information flow is bidirectional in hypothesis
formalization. Our content analysis (B) and lab study (C) triangulate the four-space model to understand
hypothesis formalization from complementary perspectives. Right: Hypothesis formalization steps also identified
in prior work on theories of sensemaking, statistical thinking, and data analysis workflows (citations included
to the right of the arrows). Hypothesis formalization is finer grained and involves more iterations. While prior
work broadly refers to mathematical equations, partial model specifications, and computationally tuned model
implementations as statistical specifications, hypothesis formalization differentiates them. As a whole, this paper
provides empirical evidence for theorized loops between conceptual hypothesis and statistical specification (see
Figure 1).

By defining and characterizing hypothesis formalization, we situate data analysis in a larger model
of scientific discovery, identify specific problem solving strategies used in hypothesis formaliza-
tion that demonstrate how data analysis (and science) is a practice, and identify opportunities for
future software to improve the transparency and reproducibility of analyses by explicitly supporting
pathways and loops through hypothesis formalization.

2 BACKGROUND AND RELATEDWORK
Our work integrates and builds upon prior research on frameworks of scientific discovery, theories of
sensemaking, statistical practices, and empirical studies of data analysts.

2.1 Dual-search Model of Scientific Discovery
Klahr and Simon characterized scientific discovery as a dual-search process involving the devel-
opment and evaluation of hypotheses and experiments [43]. They posited that scientific discovery
involved tasks specific to hypotheses (e.g., revising hypotheses) and to experiments (e.g., analyzing
data collected from experiments), which they separated into two different “spaces,” and tasks moving
between them, which is where we place hypothesis formalization.

Extending Klahr and Simon’s two-space model, Schunn and Klahr proposed a more granular four-
space model involving data representation, hypothesis, paradigm, and experiment spaces [72, 73].
In the four-space model, conceptual hypothesizing still lies in the hypothesis space, and hypothesis
testing and statistical modeling lies in the paradigm space. As such, hypothesis formalization is a
process connecting the hypothesis and paradigm spaces. In Schunn and Klahr’s four-space model,
information flows unidirectionally from the hypothesis space to the paradigm space. Here we
extend this prior research with evidence that hypothesis formalization involves both concept-to-
implementation and implementation-to-concept processes. (see Figure 1). Figure 2 augments Schunn
and Klahr’s original diagram (Figure 1 in [72]) with annotations depicting how our content analysis
of research papers and lab study triangulate a tighter dual-space search between hypothesis and
paradigm spaces with a focus on hypothesis formalization. Our mixed-methods approach follows the
precedent and recommendations of Klahr and Simon’s [44] study of scientific discovery activities.
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2.2 Theories of Sensemaking
Human beings engage in sensemaking to acquire new knowledge. Several theories of sensemaking [45,
66, 69] describe how and when human beings seek and integrate new data (e.g., observations,
experiences, etc.) to develop their mental models about the world.

Russell et al. [69] emphasize the importance of building up and evaluating external representations
of mental models, and define sensemaking as “the process of searching for a representation and
encoding data in that representation to answer task-specific questions.” External representations are
critical because they influence the quality of conclusions reached at the end of the sensemaking
process and affect how much time and effort is required in the process. Some representations may
lead to insights more quickly. Russell et al. describe the iterative process of searching for and refining
external representations in a “learning loop complex” that involves transitioning back and forth
between (i) searching for and (ii) instantiating representations.

Grolemund and Wickham argued for statistical data analysis as a sensemaking activity [29]. They
emphasize the (1) bidirectional nature of updating mental models of the world and hypotheses based
on data and collecting data based on hypotheses and (2) the process of identifying and reconciling
discrepancies between hypotheses and data. Their depiction of the analysis process parallels Klahr
and Simon’s framework of scientific discovery.

In this paper, we consider hypothesis formalization to be a learning loop [69] where the conceptual
hypothesis is an external representation of a set of assumptions analysts may have about the world
(e.g., an implicit causal model), that ultimately affects which models are specified and which results
are obtained. We found that that there are smaller learning loops as analysts search for and revise
intermediate representations, such as explicit causal models, mathematical equations, or partially
specified models. The hypothesis and model refinement loops can themselves be smaller learning
loops embedded in the larger loop of hypothesis formalization.

2.3 Statistical Thinking
Statistical thinking and practice require differentiating between domain and statistical questions. The
American Statistical Association (ASA), a professional body representing statisticians, recommends
that universities teach this fundamental principle in introductory courses (see Goal 2 in [16]).

Similarly, researchers Wild and Pfannkuch emphasize the importance of differentiating between
and integrating statistical knowledge and context (or domain) knowledge when thinking statisti-
cally [63, 64, 86]. They propose a four step model for operationalizing ideas (“inklings”) into plans
for collecting data, which are eventually statistically analyzed. In their model, analysts must transform
“inklings” into broad questions and then into precise questions that are then finally turned into a
plan for data collection (see Figure 2 in [86]). Statistical and domain knowledge inform all four
stages. However, it is unknown what kinds of statistical and domain knowledge are helpful, how
they are used and weighed against each other, and when certain kinds of knowledge are helpful
to operationalize inklings. Our work provides more granular insight into Wild and Pfannkuch’s
proposed model of operationalization and aims to answer when, how, and what kinds of statistical
and domain knowledge are used during statistical data analysis.

More recently, in Statistical Rethinking [56], McElreath proposes that there are three key rep-
resentational phases involved in data analysis: conceptual hypotheses, causal models underlying
hypotheses (which McElreath calls “process models”), and statistical models. McElreath, like the
ASA and Wild and Pfannkuch, separates domain and statistical ideas and discusses the use of causal
models as an intermediate representation to connect the two. McElreath emphasizes that conceptual
hypotheses may correspond to multiple causal and statistical models, and that the same statisti-
cal model may provide evidence for multiple, even contradictory, causal models and hypotheses.
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McElreath’s framework does not directly address how analysts navigate these relationships or how
computation plays a role, both of which we take up in this paper.

Overall, our work provides empirical evidence for prior frameworks but also (i) provides more
granular insight into how and why transitions between representations occur and (ii) scrutinizes the
role of software and computation through close observation of analyst workflows in the lab as well as
through a follow-up analysis of statistical software. Based on these observations, we also speculate
on how tools might better support hypothesis formalization.

2.4 Empirical Studies of Data Analysts
Data analysis involves a number of tasks that involve data discovery, wrangling, profiling, modeling,
and reporting [41]. Extending the findings of Kandel et al. [41], both Alspaugh et al. [1] and
Wongsuphasawat et al. [87] propose exploration as a distinct task. Whereas Wongsuphasawat et al.
argue that exploration should subsume discovery and profiling, Alspaugh et al. describe exploration
as an alternative to modeling. The importance of exploration and its role in updating analysts’
understanding of the data and their goals and hypotheses is of note, regardless of the precise order
or set of tasks. Battle and Heer describe exploratory visual analysis (EVA), a subset of exploratory
data analysis (EDA) where visualizations are the primary outputs and interfaces for exploring
data, as encompassing both data-focused (bottom-up) and goal- or hypothesis-focused (top-down)
investigations [4]. In our lab study, we found that (i) analysts explored their data before modeling
and (ii) exploratory observations sometimes prompted conceptual shifts in hypotheses (bottom-up)
but at other times were guided by hypotheses and only impacted statistical analyses (top-down). In
this way, data exploration appears to be an important intermediate step in hypothesis formalization,
blurring the lines between exploratory and confirmatory data analysis.

Decisions throughout analysis tasks can give rise to a “garden of forking paths” [25], which
compounds for meta-analyses synthesizing previous findings [40]. Liu, Boukhelifa, and Eagan [50]
proposed a broad framework that characterizes analysis alternatives using three different levels
of abstraction: cognitive, artifact, and execution. Cognitive alternatives involve more conceptual
shifts and changes (e.g., mental models, hypotheses). Artifact alternatives pertain to tooling (e.g.,
which software is used for analysis?), model (e.g., what is the general mathematical approach?),
and data choices (e.g., which dataset is used?). Execution alternatives are closely related to artifact
alternatives but are more fine-grained programmatic decisions (e.g., hyperparameter tuning). We find
that hypothesis formalization involves all three levels of abstraction. We provide a more granular
depiction of how these levels cooperate with one another.

Moreover, Liu, Althoff, and Heer [51] identified numerous decision points throughout the data
lifecycle, which they call end-to-end analysis. They found that analysts often revisit key decisions
during data collection, wrangling, modeling, and evaluation. Liu, Althoff, and Heer also found that
researchers executed and selectively reported analyses that were already found in prior work and
familiar to the research community. Hypothesis formalization is comprised of a subset of steps
involved in end-to-end analysis. Thus, we expect hypothesis formalization will be an iterative process
where domain norms will influence decision making. It is nonetheless valuable to provide insight
into how a single iteration — from a domain-specific research question to a single instantiation of a
statistical model (among many alternatives which may be subsequently explored) — occurs. Our
depiction of hypothesis formalization aims to account for more domain-general steps and artifacts,
but we recognize that domain expertise and norms may determine which paths and how quickly
analysts move through hypothesis formalization.

In summary, our work differs in (i) scope and (ii) method from prior work in HCI on data analysis
practices. Whereas hypothesis formalization has remained implicit in prior descriptions of data
analysis, we explicate this specific process. While previous researchers have relied primarily on
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post-analysis interviews with analysts, our lab study (Section 3) enables us to observe decision
making during hypothesis formalization in-situ.

2.5 Formative Content Analysis
To complement our in-depth synthesis of prior work, we conducted a formative content analysis of
50 peer-reviewed publications from five different domains.

2.5.1 Methods. We randomly sampled ten papers published in 2019 from each of the following
venues: (1) the Proceedings of the National Academy of Sciences (PNAS), (2) Nature, (3) Psycho-
logical Science (PS), (4) Journal of Financial Economics (JFE), and (5) the ACM Conference on
Human Factors in Computing Systems (CHI). We sampled papers that used statistical analyses as
either primary or secondary methodologies. Our sample represents a plurality of domains and recent
practices. 1

The first two authors iteratively developed a codebook to code papers at the paragraph-level.
The codebook contained five broad categories: (i) research goals, (ii) data sample information, (iii)
statistical analysis, (iv) results reporting, and (v) computation. Each category had more specific codes
to capture more nuanced differences between papers. This tiered coding scheme enabled us to see
general content patterns across papers and nuanced steps within papers. The first two authors reached
substantial agreement (IRR = .69 - .72) even before resolving disagreements. The first three authors
then (i) read and coded all sections of papers except the figures, tables, and auxiliary materials
that did not pertain to methodology2; (ii) discussed and summarized the papers’ goals and main
findings to ensure comprehension and identify contribution types; and (iii) visualized each paper as a
“reorderable matrix” [5].

We adapted Bertin’s “reorderable matrix” [5], an interactive visualization technique for data
exploration, in our analysis. We visualized each paper in our sample as a matrix where each row
represented a code in our codebook and each column represented a coded paragraph. We fixed the
order of paragraphs to match the paper’s progression. We colored codes (rows) according to their
categories in our codebook, repeatedly reordered the rows representing codes, and transposed the
matrices to detect visual patterns in the papers. Figure 3 shows an example matrix.

The visual representation of papers’ content and structure helped us notice common patterns
across papers and guided our follow-up analyses and discussions about what steps (RQ1 - Steps)
and considerations (RQ2 - Process) researchers reported having during hypothesis formalization.
Across multiple papers, the matrices showed how researchers typically start with broader research
goals that they decompose into specific hypotheses (i.e., hypothesis refinement) over the course of
a paper section, for example. Within a single paper, the matrices visually showed patterns of how
researchers motivated and pieced together multiple experiments and interpreted statistical results
in order to make a primary scientific argument. Our supplementary materials include our codebook
with definitions and examples as well as a summary, citation, and annotated matrix for each paper.

2.5.2 Findings. The content analysis confirmed prior findings on (i) the connection between hy-
potheses and causal models (e.g.,[56]), (ii) the importance of proxies to quantify concepts, and (iii)
the constraints that data collection design and logistics place on modeling. Extending prior work,

1Google Scholar listed the venues among the top three in their respective areas in 2018. Venues were often clustered in the
rankings without an obvious top-one, so we chose among the top three based on ease of access to publications (e.g., open
access or access through our institution). Some papers were accepted and published before 2019, but the journals had included
them in 2019 issues.
2PNAS and Nature papers included a materials and methods section after references that were distinct from extended tables,
figures, and other auxiliary material. We coded the materials and methods sections in the appendices and included them in the
content analysis. Our supplementary material describes our process in greater detail.
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Fig. 3. Formative content analysis: example reorderable matrix for [58].
We visualized each paper in our sample as a “reorderable matrix” [5] to aid in detecting patterns in papers’
structure and content that could indicate how researchers formalized their hypotheses. The rows represent the
codes in our codebook, colored according to the five broad categories of codes: research goals (rows 1-5, green),
sample information (rows 6-9, orange), statistical analysis details (rows 10-12, red), reporting of results (rows
13-18, blue), and computational details (rows 19-20, bright yellow). The columns are the paragraphs, which are
indexed by their first sentences, ordered left to right. In a paragraph’s column, there is an “X” for each code the
paragraph received. Paragraphs have multiple codes if they contain multiple types of information. Among the
ten visual patterns we noticed across our sample and subsequently looked for in each paper, two stand out in this
paper. (A) As the paper progresses (visually moving left to right), the paper’s focus shifts from research goals
to sample information to statistical analysis to results, as indicated by the arrow labeled A. Largely expected,
this pattern helps to validate our coding method. Also, there is only one paragraph that discusses statistical
software. (B) Researchers discuss research goals and questions throughout the paper. Interestingly, in the middle
of the paper, when the researchers discuss their goals in greater detail, the researchers discuss them in increasing
specificity, as indicated by the arrow labeled B. We were able to detect this pattern across papers by iterating on
how to order the research goal codes (rows 1-5, green). The final order lists codes in increasing specificity from
top (row 1) to bottom (row 5). Pattern B suggests that researchers refine their hypotheses during hypothesis
formalization, which may involve specifying proxies and statistical methods. Our supplementary materials
discuss additional patterns in this paper and across our entire sample.

the content analysis also (i) suggested that decomposing hypotheses into specific objectives is a
mechanism by which conceptual hypotheses relate to causal models; (ii) crystallized the hypothesis
refinement loop involving conceptual hypotheses, causal models and proxies; and (iii) surfaced the
dual-search nature of hypothesis formalization by suggesting that model implementation may shape
data collection.

2.5.3 Limitations. The major limitation of analyzing published papers is the disconnect between
actual and reported analytical practice. The pressures to write compelling scientific narratives [42]
likely influence which aspects of hypothesis formalization are described or omitted. For instance,
in practice, model implementations may constrain data collection more often than we found in
our sample. Nevertheless, the lack of information in prior work and the content analysis suggests
that hypothesis formalization remains an opaque process deserving of greater scrutiny. Hypothesis
formalization may explain how analysts determine which tools to use and how domain expertise may
influence the analytical conclusions reached.

2.6 Expected Steps in Hypothesis Formalization
Towards our first two research questions about what actions analysts take to formalize hypotheses
(RQ1 - Steps) and why (RQ2 - Process), prior work and our formative content analysis suggest that
hypothesis formalization involves steps in three categories: conceptual, data-based, and statistical.
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Conceptually, analysts develop conceptual hypotheses and causal models about their domain that
guide their data analysis. With respect to data, analysts explore data and incorporate insights from
exploration, which can be top-down or bottom-up, into their process of formalizing hypotheses. The
statistical concerns analysts must address involve mathematical and computational concerns, such as
identifying a statistical approach (e.g., linear modeling), representing the problem mathematically
(e.g., writing out a linear model equation), and then implementing those using software. In our work,
we find evidence to support separating statistical considerations into concerns about mathematics,
statistical specification in tools, and model implementation using tools.

A key observation about prior work is that there is a tension between iterative and linear workflows
during hypothesis formalization. Although sensemaking processes involve iteration, concerns about
methodological soundness, as evidenced in pre-registration efforts that require researchers to specify
and follow their steps without deviation, advocate for, or even impose, more linear processes. More
specifically, theories of sensemaking that draw on cognitive science, in particular [29, 69], propose
larger iteration loops between conceptual and statistical considerations. Some textbooks and research
concerning statistical thinking and practices [16, 86] appear less committed to iteration while other
researchers and practitioners in applied statistics emphasize workflows for iterating on statistical
models [24, 49, 88]. Workflows (e.g., model expansion) can help researchers start with simple
models and build up to more complex ones by incrementally testing and refining their understanding
of characterstics of the data, the model fitting algorithms, and computational settings [6, 23, 26].
Moreover, empirical work in HCI on data analysis embraces iteration during exploration and observes
iteration during some phases of confirmatory data analysis, such as statistical model choice, but not
in others, such as tool selection. In our work, we are sensitive to this tension and aim to provide more
granular insight into iterations and linear processes involved in hypothesis formalization. We also
anticipate that the steps identified in prior work will recur in our lab study, but we do not limit our
investigation to these steps.

3 EXPLORATORY LAB STUDY
To address the limitation of the content analysis, understand analysts’ considerations (RQ2 - Process)
while formalizing their hypotheses (RQ1 - Steps), and examine the role of statistical software in this
process (RQ3 - Tools), we designed and conducted a virtual lab study with freelance data workers
who approach the hypothesis formalization and analysis process with expectations of rigor but
without the pressure of publication.

3.1 Methods
Data workers: We recruited 24 data workers with experience in domains ranging from marketing to
physics to education through Upwork (22) and by word of mouth (2).3

Twelve data workers held occupations as scientists, freelance data scientists, project managers,
or software engineers. Six were currently enrolled in or had just finished graduate programs that
involved data analysis. Five identified as current or recent undergraduates looking for jobs in data
science. One was an educator. Data workers self-reported having significant experience on a 10-point
scale adapted from a scale for programming experience [21] (min=2, max=10, mean=6.4, std=2.04)
and would presumably have familiarity with hypothesis formalization.

The lab study enables us to contrast normative expert practices (found in prior work and our
formative content analysis) to observed practices with data workers who are not statistical experts but

3We refer to our participants as data workers because they work with data but do not represent the entire population of data
scientists, which may include statistical experts.
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still work in real-world analysis settings (i.e., research, marketing, consulting). A benefit of studying
these data workers is that they are likely to benefit most from new tools.
Protocol: We designed and conducted a lab study with three parts. Parts 1 and 3 were recorded and
automatically transcribed using Zoom. We compensated data workers $45 for their time. The first
author conducted the study and took notes throughout.

Part 1: Structured Tasks. Part 1 asked data workers to imagine they were leading a research
team to answer the following research question: “What aspects of an individual’s background and
demographics are associated with income after they have graduated from high school?”4 We asked
data workers to complete the following tasks:

• Task 1: Hypothesis generation. Imagining they had access to any kind of data thinkable, data
workers brainstormed at least three hypotheses related to the research question.

• Task 2: Conceptual modeling. Next, data workers saw a sample data schema and developed a
conceptual model for one or more of their hypotheses. We used the term “conceptual model”
instead of “causal model” to avoid (mis)leading data workers. We provided the following
definition: “A conceptual model summarizes the process by which some outcome occurs. A
conceptual model specifies the factors you think influence an outcome, what factors you think
do not influence an outcome, and how those factors might interact to give rise to the outcome.”

• Task 3: Statistical model specification. Finally, we presented data workers with a sample
dataset and instructed them to specify but not implement a statistical model to test one or more
of their hypotheses.

After the three tasks, we conducted a semi-structured interview with data workers about (i) their
validity concerns5 and (ii) experiences. To help us contextualize our observations and assess the
generalizability of our findings, we asked data workers to compare the study’s structure and tasks to
their day-to-day data analysis practices.

Part 2: Take-home analysis. After the first Zoom session, data workers implemented their analyses
using the previously shown dataset, shared any analysis artifacts (e.g., scripts, output, visualizations,
etc.), and completed a survey about their implementation experience. Prior to Part 3, the first author
reviewed all submitted materials and developed participant-specific questions for the final interview.

Part 3: Final Interview. The first author asked data workers to give an overview of their analysis
process and describe the hypotheses they tested, how their analysis impacted their conceptual model
and understanding, why they made certain implementation choices, what challenges they faced (if
any), and any additional concerns about validity.
Materials: The data schema and dataset used in the study came from a publicly available dataset
from the Pew Research Center [78]. Each task was presented in a separate document. All study
materials are included as supplementary material.
Analysis: The first author reviewed the data workers’ artifacts multiple times to analyze their content
and structure; thematically analyzed notes and transcripts from data workers’ Zoom sessions; and
regularly discussed observations with the other authors throughout analysis.

3.2 Findings and Discussion
Eighteen of the 24 data workers we recruited completed all three parts of the study. The other six
data workers completed only the first Zoom session. In our analysis, we incorporate data from all
data workers for as far as they completed the study.

4We chose the open-ended research question about income after high school because we expected it to be widely approachable
and require no domain expertise to understand.
5If data workers were unfamiliar with the term “validity,” we rephrased the questions to be about “soundness” or “reliability.”
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We found that data workers had four major steps (RQ1 - Steps) and considerations (RQ2 -
Process): (i) identifying or creating proxies, (ii) fitting their present analysis to familiar approaches,
(iii) using their tools to specify models (RQ3 - Tools), and (iv) minimizing bias by relying on data.
Data workers also faced challenges acquiring and incorporating domain and statistical knowledge
(RQ2 - Process).

3.2.1 Data workers consider proxies and data collection while articulating hypotheses. We encouraged
data workers to not consider the feasibility of collecting data while brainstorming hypotheses. Yet,
while brainstorming hypotheses, data workers expressed concern with how to measure constructs
[D2, D5, D8, D12, D18, D22, D24] and how to obtain data [D2, D6, D8, D9, D11, D21, D24].

For instance, D18, a computer science student who had worked on more than five data analysis
projects, grappled with the idea of ‘privilege’ and how to best quantify it:

“I’m trying to highlight the fact that those who will be privileged before graduation...that
experience will enable them to make again more money after graduation. I won’t say

‘privilege’ because we need to quantify and qualify for that...it’s just an abstract term.”

Eventually, D18 wrote two separate hypotheses about ‘privilege,’ operationalizing it as parental
income: (1) “People with higher incomes pre graduating, end up having higher differences between
pre and post graduation incomes than those with lower incomes pre graduation.” and (2) “People
with parents with lower incomes tend to have lower incomes pre graduation than those with parents
with higher incomes.”

D18 continued to deliberate ‘privilege’ as measured by low and high income, saying, “...again you
need to be careful with low and high because these are just abstract terms. We need to quantify that.
What does it mean to be ‘low?’ What does it mean to be ‘high?’”. Finally, D18 decided to “maybe
use the American standards for low income and high income.” Although an accepted “American
standard” may not exist, D18 nevertheless believed that cultural context was necessary to specify
because it could provide a normalizing scale to compare income during analysis, demonstrating how
data workers plan ahead for statistical modeling while brainstorming and refining hypotheses.

Similarly, D2, a freelance data scientist, was very specific about how to measure personality:
“More extraverted individuals (extraversion measured using the corresponding social network graph)
are likely to achieve higher yearly income later in life.”

In the presence of the data schema, more data workers were concerned with proxies [D2, D5, D6,
D7, D8, D9, D16, D18, D21]. Some even adapted their working definitions to match the available
data, similar to how researchers in the content analysis determined proxies based on data. For
instance, D8, who hypothesized that “individuals interested in STEM fields tend to earn more post
high school than individuals interested in other fields,” operationalized “interest” as “Major” — a
variable included in the data schema — even though they had previously brainstormed using other
proxies such as club attendance in high school.

These data workers’ closely related considerations of data and concept measurement demonstrate
how conceptual hypotheses and data collection may inform each other, corroborating our findings
from the content analysis.

3.2.2 Data workers consider implementation and tools when specifying statistical models. When
we asked data workers to specify their models without considering implementation, we anticipated
they would name specific statistical tests (e.g., “ANOVA”), approaches (e.g., “linear regression” or
“decision trees”), or write mathematical models (e.g., Y = B0+B1Xage+B2Xgender) that they could
then implement using their tools because (a) some researchers in the literature survey did so in
their papers and (b) several data workers mentioned having years of analysis experience. However,
despite the explicit instruction to disregard implementation, 16 data workers provided to-do lists or
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Fig. 4. Sample statistical specification (D8).
The lab study tasked analysts to specify their statistical models without considering implementation. We expected
analysts would represent their statistical models using statistical test names or mathematical equations. Instead,
most analysts specified statistical procedures for performing statistical models using todo lists and summaries of
steps, which sometimes included mentions of software tools, showing that implementation was an important
consideration and that tool familiarity may limit which statistical models analysts consider and implement. Data
worker D8 specified their model through a combination of statistical test names (e.g., Chi-squared test) and a
list (split across two pages) of detailed steps involved in creating new variables, cleaning and wrangling data,
visualizing data, and testing their hypothesis.

summaries of steps to perform a statistical analysis as their model specifications [D1, D2, D3, D5,
D7, D8, D9, D11, D12, D14, D16, D18, D20, D21, D22, D23, D24]. Of these 16 data workers, eight
also named specific statistical tests in their descriptions [D3, D7, D8, D11, D12, D14, D18, D20].

For example, D8, a data science consultant with 7/10 analysis experience, specified a list of steps
that included creating new variables that aggregated columns in the dataset, cleaning and wrangling
the data, visualizing histograms, performing chi-squared test, and interpreting the statistical results.
Notably, D8 also specified null and alternative hypotheses, which acted as an intermediate artifact
during hypothesis formalization. Figure 4 shows D8’s statistical specification.

Only four data workers named specific statistical methods without describing their steps [D4, D6,
D15, D17]. Two data workers, D22, a neuroscientist by training with 8/10 analysis experience, and
D19, an educator with 6/10 analysis experience, attempted to specify their models mathematically.
D22 used the familiar R syntax: “Current Income ~ Educational attainment + Gender + Interactions
of those two.” On the other hand, D19 gave up because although they knew the general form of
logistic regression, they did not know how to represent the specific variables in the model they wanted
to perform.

The implementation and software details data workers discussed and included in their specifications
suggest that data workers prefer to skip over mathematical equations and jump to specification and
implementation in their tools. Although it is possible that study instructions primed data workers
to respond about how they would perform, rather than represent, the task even after researcher
clarifications, this would not explain the level of implementation detail data workers included. Nine
data workers went so far as to mention specific libraries, even functions, that they would use to
program their analyses [D3, D9, D12, D13, D14, D16, D19, D21, D23]. In their reflective interviews,
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data workers also expressed that they often do not specify models outside of implementing them,
which D19 succinctly described:

“I don’t normally write this down because all of this is in a [software] library.”
Data workers’ statistical knowledge appears to be situated in the programs they write, and their

knowledge of and familiarity with tools constrains the statistical methods they explore and consider.
As such, tools may be a key point of intervention for guiding data workers toward statistical methods
that may be unfamiliar but are best suited for their conceptual hypotheses.

3.2.3 Data workers try to fit analyses to previous projects and familiar approaches. Data workers
spent significant thought and time categorizing their analyses as “prediction,” “classification,” or
“correlation” problems [D2, D3, D7, D10, D11, D18, D19, D21, D22]. To categorize, data workers
relied on their previous projects. While reflecting on their typical analysis process, D21, a software
engineer working in healthcare, said (emphasis added),

“I usually tend to jump...to look at data and match [the analysis problem] with similar
patterns I have seen in the past and start implementing that or do some rough diagrams
[for thinking about parameters, data type, and implementation] on paper...and start
implementing it.”

Data workers also looked at variable data types (i.e., categorical or continuous) to categorize. For
example, D3, a freelance analyst, pivoted from thinking about predicting income to classifying
income groups (emphasis added) based on data type information:

“The income, the column, the target value here, is categorical. I think maybe it wouldn’t
be a bad idea to see what classification tasks, what we could do. So instead of trying to
predict because we’re not trying to predict an exact number, it seems...like more of a
classification problem...”

A provocative case of adhering to prior experiences was D6, a psychological research scientist.
Although several data workers were surprised and frustrated that income was ordinal in the dataset
with categories such as“Under $10K,” “$10K to $20K,” “$20K to $30K,” up to ”150K+”, none
went so far as D6 to synthetically generate normally distributed income data so that they could
implement the linear regression models they had specified despite saying they knew that income was
not normally distributed.

When asked further about the importance of normal data, D6 described how they plan analyses
based on having normal data, strive to collect normally distributed, and rely on domain knowledge to
transform the data to be normal when it may not be after collection:

“...I feel like having non normal data is something that’s like hard for us to deal with. Like
it just kind of messes everything up like. And I know, I know it’s not always assumption
of all the tasks, but just that we tend to try really hard to get our variables to be normally
distributed. So, you know, we might like transform it or, you know, kind of clean it like
clean outliers, maybe transform if needed...I mean, it makes sense because like a lot
of measures we do use are like depressive symptoms or anxiety symptoms and kind of
they’re naturally normally distributed...I can probably count on my hand the number of
non parametric tests I’ve like included in manuscripts.”

D6’s description of their day-to-day analyses exemplifies the dual-search nature of hypothesis formal-
ization: Data workers (i) jump from hypothesis refinement to model specification or implementation
with specific proxies in mind and then (ii) collect and manipulate their data to fit their model choices.

We recognize that data workers may have taken shortcuts for the study they would not typically
make in real life. Nevertheless, the constraints we imposed by using a real-world dataset are to be
expected in real-world analyses. Therefore, our observations still suggest that rather than consider the
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nature and structure of their hypotheses and data to inform using new statistical approaches, which
statistical pedagogy and theory may suggest, data workers may choose familiar statistical approaches
and mold their new analyses after previous ones.

3.2.4 Data workers try to minimize their biases by focusing on data. Throughout the study, data
workers expressed concern that they were biasing the analysis process. Data workers drew upon
their personal experiences to develop hypotheses [D5, D10, D13, D15, D16, D20, D21, D24] and
conceptual models [D8, D12, D20, D24]. D12, a data analysis project manager, described how
their personal experiences may subconsciously bias their investigation by comparing a hypothetical
physicist and social worker answering the same research question:

“Whereas a social worker by design...they’re meant to look at the humanity behind
the numbers [unlike a physicist]. So like, they may actually end up with different re-
sults...actually sitting in front of this data, trying to model it.”

A few data workers even refused to specify conceptual models for fear of biasing the statistical
analyses [D10, D11, D19]. On the surface, data workers resisted because they believed that some
relationships, such as the effect of age on income, were too “obvious” and did not warrant documenta-
tion [D10, D11]. However, relationships between variables that were “obvious” to some data workers
were not to others. For instance, D10, a business analyst, described how income would plateau with
age, but other data workers, such as D18, assumed income would monotonically increase with age.

When we probed further into why D10, D11, and D19 rejected a priori conceptual models, they
echoed D10’s belief that conceptual models “put blinders on you.” Even the data workers who created
conceptual models echoed similar concerns of wanting to “[l]et the model do the talking” in their
implementations [D3, D15, D18, D19]. Instead of conceptual modeling, D10 chose to look at all
n-ary relationships in the dataset to determine which variables to keep in a final statistical model,
saying,

“It’s so easy to run individual tests...You can run hypothesis tests faster than you can
actually think of what the hypothesis might be so there’s no need to really presuppose
what relationships might exist [in a conceptual model].”

Of course, one could start from the same premise that statistical tests are so easy to execute and
conclude that conceptual modeling is all the more important to prioritize analyses and prevent false
discoveries.

Similarly, data workers were split on whether they focused their implementation exclusively on
their hypotheses or examined other relationships in the dataset opportunistically. Nine data workers
stuck strictly to testing their hypotheses [D1, D4, D5, D6, D7, D11, D13, D20, D24]. However, five
data workers were more focused on exploring relationships in the dataset and pushed their hypotheses
aside [D2, D3, D10, D16, D18], and an additional four data workers explored relationships among
variables not previously specified in their hypotheses in addition to their hypotheses [D14, D15, D17,
D21]. D18 justified their choice to ignore their hypotheses and focus on emergent relationships in
the data by saying that they wanted to be “open minded based on the data...open to possibilities.”

Data workers’ concerns about bias and choice of which relationships to analyze (hypothesis only vs.
opportunistic) highlight the tension between the two searches involved in hypothesis formalization:
concept-first model implementations and implementation-first conceptual understanding. Conceptual
models are intermediate artifacts that could reconcile the two search processes and challenge data
workers’ ideas of what “data-driven” means. However, given some data workers’ resistance to prior
conceptual modeling, workflows that help data workers conceptually model as a way to reflect on
their model implementations and personal biases may be more promising than ones that require them
before implementation.
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3.2.5 Data workers face challenges obtaining and integrating conceptual and statistical information.
Based on data workers’ information search behaviors and self-reports, we found that data workers
faced challenges obtaining and integrating both domain and statistical knowledge.

Data workers consulted outside resources such as API documentation, Wikipedia, and the Towards
Data Science blog throughout the study: one while brainstorming hypotheses [D13]; three while
conceptual modeling [D12, D13, D22]; six while specifying statistical models [D3, D6, D12, D13].
Six data workers also mentioned consulting outside resources while implementing their analyses
[D1, D3, D11, D14, D15, D21]. By far, statistical help was the most common.

Furthermore, when data workers reflected on their prior data analysis experiences, they detailed
how collaborators provided domain and statistical expertise that are instrumental in formalizing
hypotheses. Collaborators share data that help domain experts generate hypotheses [D9], critique
and revise conceptual models and proxies [D4, D8], answer critical data quality questions [D10], and
ensure statistical methods are appropriate [D5, D6, D22].

In the survey participants completed after implementing their analyses, the three most commonly
reported challenges were (i) formatting the data [D1, D4, D5, D6, D13, D16, D18, D20, D21, D24],
(ii) identifying which statistical analyses to perform with the data to test their hypotheses [D1, D11,
D14, D18, D20, D21], and (iii) implementing and executing analyses using their tools [D1, D6,
D7, D13, D20, D21]. Although we expected data workers would have difficulty wrangling their data
based on prior work [41], we were surprised that identifying and executing statistical tests were also
prevalent problems given that (a) data workers were relatively experienced and (b) could choose their
tools. These results, together with our observations that data workers rely on their prior experiences
and tools, suggest that data workers have difficulty adapting to new scenarios where new tools and
statistical approaches may be necessary.

3.3 Takeaways from the Lab Study
After the first session, 13 out of the 24 data workers described all the tasks as familiar, and 10
described most of the tasks and process as familiar. Data workers commonly remarked that although
the process was familiar, the order of the tasks was “opposite” of their usual workflows. In practice,
data workers may start with model implementation before articulating conceptual hypotheses, which
opposes the direction of data analysis that the ASA recommends [16]. Nevertheless, our observations
reinforce the dual-search, non-linear nature of hypothesis formalization.

Moreover, one data worker, D24, a physics researcher who primarily conducted simulation-based
studies expressed that the study and its structure felt foreign, especially because they had no control
over data collection. Other data workers in the study also described the importance of designing
and conducting data collection as part of their hypothesis formalization process [D4, D6, D9].
Designing data collection methods informs the statistical models data workers plan to use and helps
to refine their conceptual hypotheses by requiring data workers to identify proxies and the feasibility
of collecting the proxy measures, reinforcing what we saw in the content analysis. The remarks
also suggest that disciplines practice variations of the hypothesis formalization process we identify
based on discipline-specific data collection norms and constraints. For example, simulating data
may sometimes take less time than collecting human subjects data, so data workers working with
simulations may dive into modeling and data whereas others may need to plan experiments for a
longer period of time.

Approximately half of the data workers had either just finished or were enrolled in undergraduate or
graduate programs involving data analysis. As such, half of our sample likely has limited professional
experience outside of their studies and/or freelance work on Upwork. Additionally, data work
available on Upwork may be more narrowly focused and less representative of end-to-end data
analysis or research projects expected of those with greater statistical expertise. Still, several data
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workers in our study mentioned other employments where they gained professional experience
working on larger analysis and research projects. Despite the limitations of recruiting participants
from Upwork and word of mouth, our sample represents data workers who have training in a diversity
of disciplines (e.g., medicine, psychology, business), are familiar with a range of statistical methods,
and have experience using a broad range of statistical tools. As such, the data workers in our study
may be representative of analysts who are likely to benefit most from new tools for supporting
hypothesis formalization.

Finally, we found that data workers relied on prior experiences and tools to specify and formalize
their hypotheses. Tools that scaffold the hypothesis formalization process by suggesting statistical
models that operationalize the conceptual hypotheses, conceptual models, or partial specifications
data workers create along the way may (i) nudge data workers towards more robust analyses that
test their hypotheses, (ii) overcome limitations of data workers’ prior experiences, and (iii) even
expand data workers’ statistical knowledge. Thus, we investigated how current tool designs serve (or
under-serve) hypothesis formalization.

4 ANALYSIS OF SOFTWARE TOOLS
To understand how the design of statistical computing tools may support or hinder hypothesis
formalization (RQ3 - Tools), we analyzed widely used software packages and suites. Throughout,
we use the term “package” to refer to a set of programs that must be invoked through code, such as
lme4, scipy, and statsmodels. We use the term “suite” to refer to a collection of packages that
end-users can access either through code or graphical user interfaces (GUIs), such as SPSS, SAS, and
JMP. We use the term “tool” to refer to both. Software packages were a unit of analysis because they
are necessary for model implementation regardless of medium (e.g., computational notebook, CoLab,
RStudio). As such, our findings apply to tools that provide wrappers around packages included in
our sample.

4.1 Method
Sample: Our sampling procedure involved two phases: (i) identifying software packages and suites
for model implementation (not visual analysis tools like Tableau) mentioned more than once across
the content analysis and lab study and (ii) adding recommended packages and suites from online data
science communities our lab participants mentioned or used (e.g., Towards Data Science). To identify
these additional tools, we consulted online data analysis fora [8, 9, 28, 67]. The final sample included
20 statistical tools: 14 packages (R: 10, Python: 4); three suites that support in-tool programming;
and three suites that do not support programming. Table 1 contains an overview of our sample and
results.
Analysis: Four specific questions guided our analysis:

• Specialization: Data workers in the lab study eagerly named specific statistical tools they
would use and looked up tool documentation during the tasks. This prompted us to ask, How
specialized are the tools, and how might specialization (or lack thereof) affect how end-users
discover and use them to formalize hypotheses?

• Statistical Taxonomies: Data workers in the lab study tried to mold their analyses to prior
experiences and their taxonomies of statistical methods. We wondered what role tools play in
this: How do tools organize and group statistical models? How might tool organization and
end-users’ taxonomies interplay during hypothesis formalization?

• Model Expression: Data workers in the lab study jumped to model implementation throughout
the tasks. Only half provided names of statistical methods. We wondered if this was due to how
tools enable end-users to express their models: What notation must end-users use to express
models in the tools?
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• Computational Issues: Data workers in the lab study described their statistical models using
specific function calls. Similarly, although it was uncommon for researchers in the content
analysis to specify the software tools they used, when they did, researchers specified the
functions, parameters, and settings used. This prompted us to wonder about the importance of
computational settings: What specific kinds of computational control do tools provide end-users
and how might that impact hypothesis formalization?

To answer the four questions for each statistical tool, the first author read and took notes on
published articles about tools’ designs and implementations, API documentation and reference
manuals, and available source code; followed online tutorials; consulted question-and-answer sites
(e.g., StackExchange) when necessary; and analyzed sample data with the tools. The first author paid
particular attention to tool organization, programming idioms, functions and their parameters, and
tool failure cases. Table 1 contains citations for resources consulted in the analysis. The iterative
analysis process involved discussions among the co-authors about how to evaluate the properties
of tools from our perspectives as both tool designers/maintainers and end-users. Here, we focus on
end-user (hereafter referred to as analyst) perspectives informed by our lab study and make callouts
to details relevant for tool designers.

4.2 Findings and Discussion
We discuss our findings in light of our characterization of hypothesis formalization in Figure 1. We
refer to specific steps and transitions in Figure 1 in boldface.

4.2.1 Specialization. Half the tools [T2, T3, T4, T5, T6, T7, T8, T9, T11, T12] in our sample are
specialized in the scope of statistical analysis methods they support (e.g., brms supports Bayesian
generalized linear multilevel modeling). edgeR [T3] provides multiple modeling methods but is
specialized to the context of biological count data. Such specialized tools are vital to creating a
widely adopted statistical computing ecosystem, such as R.

Despite its importance, tool specialization pushes computational concerns higher up the hypothesis
formalization process. Specialized tools require analysts to consider computational settings while
picking a statistical tool and, possibly, even while mathematically relating their variables. They fuse
the last two steps of hypothesis formalization (Statistical Specification and Model Implementa-
tion). Ultimately, specialization requires analysts to have more (i) computational knowledge and (ii)
foresight about their model implementations at the cost of focusing on conceptual or data-related
concerns early in hypothesis formalization.

One way tool designers minimize the requisite computational knowledge and foresight while
providing the benefits of specialized packages — which may be optimal for specific statistical
models or data analysis tasks — is to provide micro-ecosystems of packages. For example, R’s
tidymodels [48] and tidyverse [85] create micro-ecosystems that use consistent API syntax and
semantics across interoperable packages. They also push analysts towards what the tool designers
believe to be best practices, such as the use of the tidy data format [84]. Tools that aim to support
hypothesis formalization may consider fitting into or creating micro-ecosystems that provide tool
support all along the process, focusing analysts on concepts, data, or model implementation at various
points.

4.2.2 Statistical taxonomies. A consequence of tool specialization is the fragmented view of sta-
tistical approaches. For example, we observed analysts in the lab study who viewed the analysis as
a classification task gravitate towards machine learning-focused libraries, such as RandomForest
[T9], Keras [T11], and scikit-learn [T12]. Because classification can be implemented as logistic
regression, any tool that supports logistic regression, such as the core stats library in R [T10],
provides equally valid, alternative perspectives on the same analysis and hypothesis. However, tools
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Table 1. Overview of the software tools included in our analysis.
Half of the tools are specialized for specific modeling use cases. Most tools use mathematical notation (T18–T20
(✓*) even use mathematical notation in their GUIs). Most tools also provide a wide range of computational
control although sometimes they require additional packages [T5, T13]. Tool specialization, organization,
notation, and computational control focus analysts on model implementation details, sometimes at the expense
of focusing on their conceptual hypotheses.

ID Tool name Specialized
Scope

Mathematical
Notation

Computational
Control

References

R Packages

T1 MASS — ✓ ✓
[68]

T2 brms ✓ ✓ ✓
[13, 14]

T3 edgeR ✓ ✓ ✓
[17, 18]

T4 glmmTMB ✓ ✓ ✓
[11, 55]

T5 glmnet ✓ — ✓(additional)
[22, 32]

T6 lme4 ✓ ✓ ✓
[2, 3]

T7 MCMCglmm ✓ ✓ ✓
[30, 31]

T8 nlme ✓ ✓ ✓
[65]

T9 RandomForest ✓ ✓ ✓(minimal)
[10]

T10 stats (core library) — ✓ ✓
[79]

Python Packages

T11 Keras ✓ — ✓(minimal)
[19]

T12 Scikit-learn ✓ — ✓
[12, 61, 74]

T13 Scipy (scipy.stats) — — ✓(additional)
[36–38]

T14 Statsmodels — ✓ —
[62, 75]

Suites, with DSLs for programming

T15 Matlab (Statistics and ML Toolbox) — — ✓
[80, 81]

T16 SPSS — ✓ ✓
[76]

T17 Stata — ✓ —
[52, 53, 77]

Suites, without programming

T18 GraphPrism — ✓* ✓
[27]

T19 JASP — ✓* —
[60]

T20 JMP — ✓* —
[35, 71]

obfuscate these connections and do not aid analysts in considering reasonable statistical models that
may be unfamiliar or outside their personal taxonomy. This may explain why analysts adhered to
their personal taxonomies during the lab study.

This problem carries over to tools that support numerous statistical methods. Ten tools in our
sample intend to provide more comprehensive statistical support [T1, T10, T13, T14, T15, T16, T17,
T18, T19, T20]. These tools group statistical approaches using brittle and inconsistent taxonomies
based on data types [T17]; analysis classes that are both highly specific (e.g., “Item Response
Theory”) and vague (e.g., “Multivariate analyses”) [T15, T16, T17, T18, T19, T20]; and disciplines
or applications (e.g., “Epidemiology and related,” “Direct Marketing”) [T16, T17, T20]. Although
well-intended to simplify statistical method selection, tools’ taxonomies are at times misleading.
For instance, JMP combines various linear models into a “Fit Model” option that is separate from
“Predictive Modeling” and “Specialized Modeling,” which are also distinct from the more general
“Multivariate Methods.” Once analysts select the “Fit Model” option, they can specify the “Personality”
of their model as “Generalized Regression,” “Generalized Linear Model,” or “Partial Least Squares,”
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among many others. This JMP menu structure implies that (i) a Partial Least Squares model is distinct
from a regression model when it is in fact a type of regression model and (ii) regression is not useful
for prediction, which is not the case.

In these ways, tools add a “Navigate taxonomies” step before the Statistical Specification step,
requiring analysts to match their conceptual hypotheses with the tools’ taxonomies, which may
misalign with their personal taxonomies. One reason for this issue may be that tools do not leverage
analysts’ intermediate artifacts or understanding during hypothesis formalization. By the time analysts
transition to Statistical Specification, they have refined their conceptual hypotheses, developed
causal models, and made observations about data. However, tools’ taxonomies require analysts
to set these aside and consider another set of decisions imposed by tool-specific groupings of
statistical methods. In this way, tool taxonomies may introduce challenges that detract from hypothesis
formalization.

4.2.3 Model expression: Syntax and semantics. Fifteen tools in our sample provide analysts with
interfaces that use mathematical notation to express statistical models [T1, T2, T3, T4, T6, T7,
T8, T9, T10, T14, T16, T17, T18, T19, T20]. R and Python packages use symbolic mathematical
syntax, and SPSS and Stata use natural language-like syntax. Expressing a linear model with Sex,
Race, and their interaction as predictors of Annual Income involves the formula AnnualIncome
∼ Sex + Race + Sex*Race in lme4 and AnnualIncome BY Sex Race Sex*Race in SPSS. In
a linear execution of steps involved in hypothesis formalization where analysts relate variables
mathematically (Mathematical Equation) before specifying and implementing models using tools
(Statistical Specification, Model Implementation), the mathematical interfaces match analysts’
progression. However, in the lab study, analysts did not specify their models mathematically even
when given the opportunity, suggesting that mathematical syntax may not adequately capture analysts’
conceptual or statistical considerations.

Syntactic similarity between packages may lower the barrier to trying and adopting new statistical
approaches that more directly test hypotheses and therefore benefit hypothesis formalization. At the
same time, syntactic similarity may also introduce unmet expectations of semantic similarity. For
example, brms [T2] uses the same formula syntax as lme4 [T6], smoothing the transition between
linear modeling and Bayesian linear modeling for analysts. However, based on syntactic similarity,
analysts may incorrectly assume statistical equivalence in computed model values. For example, in
brms, the model intercept is the mean of the posterior when all the independent variables are at their
means, but in lme4, the intercept is the mean of the model when all the independent variables are at
zero.

Conversely, tools introduce syntactic differences between statistical approaches that are for the most
part semantically equivalent, which may lead to additional challenges in hypothesis formalization.
For instance, an ANOVA with repeated measures and a linear mixed effects model are similar in intent
but require two different function calls, one without a formula (e.g., AnovaRM in statsmodels [T14])
and another with (e.g., mixedlm in statsmodels [T14]). Even when considering only ANOVA, tools
may provide similar syntax but implement different sums of squares procedures for partitioning
variance (i.e., Type I, Type II, or Type III).6 By default, R’s stats core package [T10] uses Type
I, statsmodels [T14] uses Type II, and SPSS [T16] uses Type III. The three different sum of
squares procedures lead to different F-statistics and p-values, which may lead analysts to different
conclusions. More importantly, the procedures encode different conceptual hypotheses. If analysts
have theoretical knowledge or conceptual hypotheses about the order of independent variables,

6Type I is (a) sensitive to the order in which independent variables are specified because it assigns variance sequentially and
(b) allows interaction terms. Type II (a) does not assign variance sequentially and (b) does not allow interaction terms. Type
III (a) does not assign variance sequentially and (b) allows interaction terms. For an easy-to-understand blog post, see [46].
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tools defaulting to Type I (e.g., R’s stats core library) align the model implementation with the
conceptual hypotheses. However, if analysts do not have such conceptual hypotheses, tools’ default
behavior would execute (without error) and silently respond to a conceptual hypothesis different
from the one the analyst seeks to test. In this way, syntactic and semantic mismatches can create a
rift between model implementations and conceptual hypotheses. Furthermore, the impact of tools’
“invisible” model implementation choices reinforces the interplay between conceptual and model
implementation concerns during hypothesis formalization.
4.2.4 Computational issues. Tools provide end-users with options for optimizers and solvers used
to fit statistical models [T1, T2, T4, T6, T7, T8, T10, T11, T13, T16, T18], convergence criteria
used for fitting models [T3, T6, T16, T18], and memory and CPU allocation [T2, T5, T12, T15],
among more specific customizations. For instance, lme4 [T6] allows analysts to specify the nonlinear
optimizer and its settings (e.g., the number of iterations, convergence criteria, etc.) used to fit models.
In brms [T2], analysts can also specify the number of CPUs to dedicate to fitting their models. Some
computational settings are akin to performance optimizations, affecting computer utilization but not
the results. However, not all computational changes are so well-isolated.

For example, the failure of a model’s inference algorithm to converge (in Model Implementation)
may prompt mathematical re-formulation (Mathematical Equation), which may cast Observations
about Data in a new light, prompting Causal Model and Conceptual Hypothesis revision. In other
words, computational failures and decisions may bubble up to conceptual hypothesis revision and
refinement, which may then trickle back down to model implementation iteration, and so on. In
this way, computational control can be another entry into the dual-search process of hypothesis
formalization.

In theory this low-level control could help analysts formalize nuanced conceptual hypotheses in
diverse computational environments. However, we found that tools do not currently provide feedback
on the ramifications of these computational changes, introducing a gulf of evaluation [59]. Analysts
can easily change parameters to fine-tune their computational settings, but how they should interpret
their model implementations and revisions conceptually is unaddressed, suggesting opportunities for
future tools to bridge the conceptual and model implementation gap.

4.3 Takeaways from the Analysis of Tools
Taken together, our analysis shows that tools can support a wide range of statistical models but
expect analysts to have more statistical expertise than may be realistic. They provide limited guidance
for analysts (i) to express and translate their conceptual and partially-formalized concerns and (ii)
identify reasonable models. Tools also provide little-to-no feedback on the conceptual ramifications
of model implementation iterations. These gaps reveal a misalignment between analysts’ hypothesis
formalization processes and tools’ expectations and design. Possible reasons for this mismatch may
be that tools do not scaffold or embody the dual-search nature of hypothesis formalization or leverage
all the intermediate artifacts analysts may create (e.g., refined conceptual hypotheses, causal models,
data observations, partial specifications, etc.) throughout the process.

5 IMPLICATIONS
Our findings suggest three opportunities for tools to facilitate the dual-search process and align
conceptual hypotheses with statistical model implementations at various stages of hypothesis formal-
ization.

5.1 Meta-libraries: Connecting Model Implementations with Mathematical Equations
Specialized tools, although necessary for sophisticated statistical computation, require a steep learning
curve. Meta-libraries could allow analysts to specify their models in high-level code; execute the

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Hypothesis Formalization: Empirical Findings, Software Limitations, and Design Implications 1:21

models using the appropriate libraries in their knowledge bases; and then output library information,
functions invoked, any computational settings used, the mathematical model that is approximated,
and the model results. Libraries such as Parsnip [47] have begun to provide a unified higher-level
interface that allows analysts to specify a statistical model using more “generically” named functions,
parameter names, and symbolic formulae (when necessary). Parsnip then compiles and invokes
various library-specific functions for the same statistical model.

Probabilistic programming languages (PPLs), such as Pyro [7], Stan [15], BUGS [54], PyMC [70],
already enable the development of meta-libraries. PPLs support modular specification of data,
probabilistic models, and probabilistic hypotheses. Existing libraries, including brms, provide higher-
level APIs whose syntax uses symbolic formulae, for instance, and compile to programs in a PPL
(i.e., Stan in the case of brms).

As already seen in Parsnip and tools using PPLs, meta-libraries could bring three benefits. First,
they would provide simpler, less fragmented interfaces to analysts while continuing to take advantage
of tool specialization. Second, meta-libraries that output complete mathematical representations
would more tightly couple mathematical representations with implementations, providing an on-ramp
for analysts to expand their statistical knowledge. Third, meta-libraries that show the mathematical
representations alongside underlying libraries’ function calls could show syntactical variation in
underlying libraries, indirectly teaching analysts how they might express their statistical models in
other tools, familiarizing analysts with new tools and models, and even mend fragmented views of
identical models (e.g., ANOVA and regression).

Future meta-libraries could consider providing a higher-level, declarative interface that does not
require analysts to write symbolic formulae. Designing such declarative meta-libraries would require
formative elicitation studies (similar to natural programming studies such as [82]) on declarative
primitives that are memorable, distinguishable, and reliably understood. An additional challenge
would lie in maintaining support for various libraries executed under the hood, especially as libraries
change their APIs, which would strengthen the case for meta-libraries. Although meta-libraries
would not solve the problems involved in understanding how computational settings affect model
execution or conceptual hypotheses, they could nevertheless provide scaffolding for analysts to more
closely examine specific libraries, especially if multiple libraries execute the same model but do not
all encounter the same computational bottlenecks.

5.2 High-level Libraries: Expressing Conceptual Hypotheses to Bootstrap Model
Implementations

The absence of tools for directly expressing conceptual hypotheses may be an explanation for why
data workers in the lab study dove into model implementation details. High-level libraries could
allow analysts to specify data collection design (e.g., independent variables, dependent variables,
controlled effects, possible random effects); variable data types; expected or known covariance
relationships based on domain expertise; and hypothesized findings in a library-specific grammar.
High-level libraries could compile these conceptual and data declarations into weighted constraints
that represent the applicability of various statistical approaches, in a fashion similar to Tea [39], a
domain-specific language for automatically selecting appropriate statistical analyses for common
hypothesis tests. Libraries could then execute the appropriate statistical approaches, possibly by
using a meta-library as described above.

In addition to questions of how to represent a robust taxonomy of statistical approaches compu-
tationally, another key challenge for developing high-level libraries is identifying a set of minimal
yet complete primitives that are useful and usable for analysts to express information that is usually
expressed at different levels of abstraction: conceptual hypotheses, study designs, and possibly even
partial statistical model specifications. For instance, even if a conceptual hypothesis is expressible

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:22 Eunice Jun, Melissa Birchfield, Nicole de Moura, Jeffrey Heer, and René Just

in a library, it may be impossible to answer with a study design or partial statistical model that
is expressed in the same program. An approach may be to draw upon and integrate aspects from
existing high-level libraries and systems that aim to address separate steps of the hypothesis formal-
ization process, such as Touchstone2 [20] for study design and Tea and Statsplorer [83] for statistical
analysis.

5.3 Bidirectional Conceptual Modeling: Co-authoring Conceptual Models and Model
Implementations

Conceptual, or causal, modeling was difficult for the analysts in the lab study. Some even resisted
conceptual modeling for fear of biasing their analyses. Yet, implicit conceptual models were evident
in the hypotheses analysts chose to implement and the sub-hypotheses researchers articulated in the
content analysis.

Mixed-initiative systems that make explicit the connection between conceptual models and sta-
tistical model implementations could facilitate hypothesis formalization from either search process
and allow analysts to reflect on their analyses without fear of bias. For example, a mixed-initiative
programming environment could allow analysts to write an analysis script, detect data variables
in the analysis scripts, identify how groups of variables co-occur in statistical models, and then
visualize conceptual models as graphs where the nodes represent variables and the edges represent
relationships. The automatically generated conceptual models would serve as templates that analysts
could then manipulate and update to better reflect their internal conceptual models by specifying
the kind of relationship between variables (e.g., correlation, linear model, etc.) and assigning any
statistical model roles (e.g., independent variable, dependent variable). As analysts update the visual
conceptual models, they could evaluate script changes the system proposes. In this way, analysts
could externally represent their causal models while authoring analysis scripts and vice versa.

Although bidirectional programming environments already exist for vector graphics creation [33],
they have yet to be realized in mainstream data analysis tools. To realize bidirectional, automatic
conceptual modeling, researchers would need to address important questions about (i) the visual
grammar, which would likely borrow heavily from the causal modeling literature; (ii) program
analysis techniques for identifying variables and defining co-occurrences (e.g., line-based vs. function-
based) in a way that generalizes to multiple statistical libraries; and (iii) adoption, as analysts who
may benefit most from such tools (likely domain non-experts) may be the most resistant to tools that
limit the number of “insights” they take away from an analysis.

6 DISCUSSION, LIMITATIONS, AND FUTUREWORK
Hypothesis formalization is a dual-search process of translating conceptual hypotheses into statistical
model implementations. Due to constraints imposed by domain expertise, data, and tool familiarity,
the same conceptual hypothesis may be formalized into different model implementations. A single
model implementation may be useful for making multiple statistical inferences. The same model
implementation may also formalize two possibly opposing hypotheses. To navigate these constraints,
analysts use problem-solving strategies characteristic of the larger scientific discovery process [43,
72]. As such, hypothesis formalization exemplifies how data science is a design practice.

At a conceptual level, hypothesis formalization involves hypothesis refinement, which, to use
Schunn and Klahr’s language [72], is a scoping process. In the formative content analysis, we found
that researchers decomposed their research goals and conceptual hypotheses into specific, testable
sub-hypotheses and concretized constructs using proxies, born of theory or available data. Also,
we found that analysts in the lab study also quickly converged on the need to specify established
proxies or develop them based on the data schema presented. In hypothesis formalization, scoping
incorporates domain- and data-specific observations to qualify the conceptual scope of researchers’
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hypotheses. In other words, hypothesis refinement is an instance of means-end analysis [57], a
problem-solving strategy that aims to recursively change the current state of a problem into sub-goals
(i.e., increasingly specific objectives) in order to apply a technique (i.e., a particular statistical model)
to solve the problem (i.e., test a hypothesis).

At the other computational endpoint of hypothesis formalization, model implementation also
involves iteration. Through our analysis of software tools, we found that analysts must not only
select tools among an array of specialized and general choices but also navigate tool-specific
taxonomies of statistical approaches. These tool taxonomies may both differ from and inform
analysts’ personal categorizations, potentially explaining why analysts in our lab study relied on
their personal taxonomies and tools. Based on their prior experience, analysts engage in analogical
reasoning [34], finding parallels between the present analysis problem’s structure and previously
encountered ones or ones that fit a tool’s design easily.

Upon selecting a statistical function, analysts may tune computational settings, choose different
statistical functions or approaches, which they may tune, and so on. In this way, the model imple-
mentation loop in hypothesis formalization captures the “debugging cycles” analysts encounter,
such as the census researcher in the introduction. The tool ecosystem as a whole supports diverse
model implementations, even for the same mathematical equation. However, the tool interfaces
provide low-level abstractions, such as interfaces using mathematical formulae that, based on our
observations in the lab study, do not support the kind of higher-level conceptual reasoning required
of hypothesis formalization.

The steps, considerations, and strategies we have identified are domain-general. Domain-specific
expertise likely influences how quickly analysts switch between steps and strategies during the
dual-search process. Domain experts, including researchers in our content analysis, may know which
statistical model implementations and computational settings to use a priori and design their studies
or specify their conceptual hypotheses in light of these expectations — incorporating means-end
analysis and analogical reasoning strategies — more quickly. It may be these insights that analysts in
our lab study sought when they looked online for conceptual and statistical help.

Future work could observe how domain experts perform hypothesis formalization and characterize
when and how analysts draw upon their own or collaborators’ expertise to circumvent iterations
or justify early scoping decisions. These insights may also shed light on how pre-registration
expectations and practices could be made more effective. Given the level of detail required of some
pre-registration policies, researchers likely engage in a version of the hypothesis formalization
process we have identified prior to registering their studies. Knowing how pre-registration fits into the
hypothesis formalization process could improve the design and adoption of pre-registration practices.

Future work could also explore how hypothesis formalization may differ in machine learning
settings. In this paper, our focus was on how analysts answer domain questions and test hypotheses
using statistical methods and their domain knowledge. Our findings may not generalize to settings
or methods where domain knowledge is less important, such as deep learning and other machine
learning-based approaches.

Finally, our findings suggest opportunities for future tools to bridge steps involved in hypothesis
formalization and guide analysts towards reasonable model implementations. Our analysis of tools
suggest possibilities for tools to connect model implementations to their mathematical representations
through meta-libraries, provide higher-level abstractions for more directly expressing conceptual
hypotheses, and support automated conceptual modeling. Future system development and user
testing are necessary to validate these implications and more readily support analysts translate their
conceptual hypotheses into statistical model implementations.
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