
Draco 2: An Extensible Platform to Model Visualization Design
Junran Yang*

University of Washington,
Seattle

Péter Ferenc Gyarmati†

University of Vienna,
Vienna

Zehua Zeng‡

University of Maryland,
College Park

Dominik Moritz§

Carnegie Mellon University,
Pittsburgh

ABSTRACT

Draco introduced a constraint-based framework to model visualiza-
tion design in an extensible and testable form. It provides a way to
abstract design guidelines from theoretical and empirical studies and
applies the knowledge in automated design tools. However, Draco is
challenging to use because there is limited tooling and documenta-
tion. In response, we present Draco 2, the successor with (1) a more
flexible visualization specification format, (2) a comprehensive test
suite and documentation, and (3) flexible and convenient APIs. We
designed Draco 2 to be more extensible and easier to integrate into
visualization systems. We demonstrate these advantages and believe
that they make Draco 2 a platform for future research.

Index Terms: Human-centered computing—Visualization—
Visualization systems and tools

1 INTRODUCTION

For the remainder of this paper, we refer to the original system as
Draco 1, while Draco and Draco 2 denote our presented contribution.

Draco 1 [16] aims to make design guidelines concrete, actionable,
and testable. By encoding guidelines as logical rules, developers
and researchers can build computational knowledge bases for au-
tomatically assessing existing charts [1, 7, 15] and generating new
recommended charts [13,21–23]. To evaluate and recommend charts,
Draco 1 uses a constraint solver that checks whether a specification
is valid or finds a design that incurs a minimal cost of constraint
violations. Using this approach, Draco 1 can warn users about inef-
fective designs and provide design suggestions, even for partial and
ambiguous requests. By formalizing design guidelines as constraints,
visualization researchers and practitioners can add their own design
considerations and immediately test the results, seeing how differ-
ent rules and weights change which visualizations are considered
the most preferable. The weights of the constraints in the Draco 1
knowledge base can be adjusted by hand or learned from graphical
perception results [24, 25, 27] using machine-learning [8, 11].

Since its introduction in 2018, Draco 1 has become a popular
tool in the visualization research community. Yet, even though
Draco 1 as a conceptual framework can keep up with expanding
design rules over time, its original implementation and knowledge
base are limited in two major ways. First, Draco 1 only focuses on
single views and faceted views (using row and column encodings)
limiting its support for multi-view visualizations. Its specification
language is also closely tied to Vega-Lite [17]. It is not generalizable
to render recommended results with other visualization libraries.
Second, Draco 1 comes with limited documentation, low test cov-
erage, and limited tooling support, making it difficult to adopt it
as a library. The inability to be integrated into emerging projects
hinders Draco 1 from being a true platform for future research in

*e-mail: junran@cs.washington.edu
†e-mail: peter.ferenc.gyarmati@univie.ac.at
‡e-mail: zhzeng@umd.edu
§e-mail: domoritz@cmu.edu

visualization recommendation and reasoning about visualization
design.

To overcome these limitations, we introduce Draco, an improved
system for capturing and applying visualization design best practices.
In summary:
• Draco introduces an improved visualization specification format,

independent of Vega-Lite, which makes it more flexible and exten-
sible. It supports much more designs, including multi-layer and
multi-view visualizations and makes scales a first-class concept.

• Draco (1) has thorough documentation covering the core modules,
lower-level building blocks, and examples, and (2) a comprehen-
sive test suite with 100% unit test coverage, making it more reli-
able and suitable for adoption. Draco is easier to set up as it runs
entirely in Python (the original Draco 1 system needed Python
and JavaScript). We provide a REST API so Draco can still be
integrated into web-based applications. We also distribute Draco
as a WebAssembly package which runs in any modern browser.

• Draco has convenient APIs to interact with the knowledge base to
convert constraints from and to a nested format, validate specifi-
cations, recommend optimal completions of partial specifications
(visualization recommendation), and to debug, adapt, and extend
the knowledge base. We consider the default knowledge base in
Draco as a starting point that researchers and systems builders
adapt using these tools.
We believe that our work is a significant update to the original

Draco 1 system. We envision that with the improvements described
in this paper, Draco 2 can be a solid platform for customization and
future visualization research. Towards this goal, we make Draco 2
available as open source at github.com/cmudig/draco2. In this paper,
we discuss the version 2.0.0.

2 BACKGROUND AND RELATED WORK

Draco upgrades its previous version, Draco 1 [16]—a framework
for efficiently modeling visualization design knowledge towards
constructing new visualization recommendation algorithms, with
a more general visualization specification and more user-friendly
utilities for knowledge representation.

Visualization Specification: Automated visualization tools use
specification languages to describe and synthesize visualization
designs. Mackinlay’s APT [13] system ranks encoding choices
based on the expressiveness and effectiveness criteria. Tableau’s
ShowMe [14] suggests specific encodings with heuristic rules. Voy-
ager’s [22, 23] CompassQL [21] and Draco 1 both build on the
Vega-Lite [17] grammar and combine rules that model fine-grained
design knowledge with hand-tuned scores. In Draco, we re-design
the logical representation to a generalized and extended chart speci-
fication format that is extensible and renderer-agnostic. With such a
format, we support multiple views and view composition.

Modeling Visualization Design Knowledge: Visualization rec-
ommendation researches on algorithms including rule-based meth-
ods considering theoretical principles [13, 14, 22, 23] or proposing
new metrics [2, 9, 19], and ML-based approaches [8, 11, 12] learning
from a vast corpus of empirical results. Visualization recommenda-
tion frameworks [16, 18, 21] have been proposed to make it easier
to design and test new recommendation algorithms. Draco 1 is the
only one that was designed with the explicit goal of being extensible

ar
X

iv
:2

30
8.

14
24

7v
1 

 [
cs

.H
C

] 
 2

8 
A

ug
 2

02
3

https://github.com/cmudig/draco2
https://github.com/cmudig/draco2/releases/tag/v2.0.0


and adaptable. It allows modeling visualization design knowledge
in Answer Set Programming (ASP) and uses the Clingo solver [4–6]
to search the constrained space and rank the answers with weighted
costs. Draco aims to provide a platform for future research beyond
constructing visualization recommendation algorithms. For example,
Zeng et al. [26] use Draco to analyze the implication of different
graphical perception studies.

3 COMPONENTS OF DRACO

Draco has three main components: a general description language
for charts, a knowledge base that encodes best practices using hard
and soft constraints, and an API to manipulate the knowledge base
and programmatically reason about the knowledge base using a
constraint solver.

3.1 Draco Specification Format
To express knowledge over visualization designs, Draco describes
visualizations as logical facts similar to Draco 1. Draco specifies
charts in a more generic and extensible way than its previous version.
In general, it describes the structure of charts as nested specifica-
tions. Since Clingo needs a flat list of facts, Draco has methods
to convert the nested representation to (dict_to_facts) and from
(answer_set_to_dict) a flat list of logical facts with the relation-
ships also expressed as logical facts.

3.1.1 Nested specification format with Entities and Attributes

Figure 1: (a) Chart specification as a nested dictionary (left, here as
a Python dict), (b) flattened list of logical facts (middle, in Answer
Set Programming), (c) the rendered visualization result, and (d) the
skeleton abstracted from the logical format.

Draco specifies the nested chart specification with two kinds
of facts: entity and attribute as shown in Figure 1. Enti-
ties describe objects and their association with unique identi-
fiers, while attributes describe the properties of entities. For
example, entity(mark,v0,m1). attribute((mark,type),m1,bar).
specifies a mark object m1 of type bar on the view object v0.

The logical format can be seen as a tree where the entities and
attributes are the nodes connected by the entity keys. For example,
Figure 1 (d) shows the skeleton of the specification with only the en-
tities. Using this format, Draco allows for both complete and partial
specification as input. A complete specification has attributes associ-
ated with each entity, specifying a ready-to-render chart. A partial
specification defines either part of all components in a complete chart
(e.g., one layer of a multi-layer chart), the skeleton of a chart without
the attributes (e.g., a single-view-single-layer chart with an arbitrary
mark type), or a mix of both. Our enumeration algorithm supported
by ASP augments the skeleton with additional entities and completes
it by filling in potential attributes. Meanwhile, Draco reasons about
fine-grained rules related to subtrees of the input by checking if they

satisfy the given constraints. Additional hints can be included as
part of the query to constrain the target outputs. For example, adding
aggregate rules like :- {entity(encoding,_,_)} <= 2. filters out
designs with less than three encodings (headless rules are integrity
constraints that derive false from their body, and satisfying the body
results in a contradiction, which is disallowed). The tree structure of
logical format allows for querying, searching, and reasoning about
abstract visualization composition.

The dictionary format is an abstraction from the logical
format that can generalize to multiple visualization speci-
fication languages with customized renderers. Its compact
format keeps the structural information but is agnostic of
entity identifiers. Thus, it deduplicates structural equivalent
specifications whose entity keys are different. For instance,
entity(view,root,v0). attribute((view,coords,v0,polar))

and entity(view,root,0). attribute((view,coords,0,polar))
would both be represented as {"view":[{"coords":"polar"}]} in
a dictionary format since they are structurally identical, even though
the entity keys v0 and 0 are different.

3.1.2 Encoding Visualizations in Draco
Draco 1 uses an encoding based on the Grammar of Graphics
(GoG) [20] and Vega-Lite [17]. However, Draco 2 is not limited
to the features Vega-Lite supports. For instance, in Vega-Lite and
Draco 1, each encoding has a data type that describes the semantics
of the data (quantitative, temporal, ordinal, or nominal). However,
encoding data types are omitted in Draco 2 because they can be
automatically inferred from the combination of primitive field type
(number, string, etc.) and the scale type (linear, log, ordinal, or cate-
gorical) for the encoding. Therefore, Draco 2’s constraints directly
reason about primitive field type and scale type, which are both ex-
plicit elements in visualizations compared to encoding type. Draco 2
also makes scales an explicit entity that can be associated and shared
with multiple encodings across marks. Shared scales allow for com-
parisons across marks. Vega-Lite, which does not explicitly make
scales independent entities, has to resort to a mechanism in which
authors specify how scales in a view resolve1.

Because of the nested format with entities and attributes, Draco 2
is generic and convenient to extend. Figure 1 shows the complete
specification for a single-view single-layer bar chart. However,
a Draco 2 program can encode visualizations in multiple views,
where a view can contain one or more marks that encode data and
corresponding scales. If a view has multiple marks, Draco 2 assumes
that the marks are in the same view space in the chart (i.e., layered).
Besides the visualization, a Draco 2 program can describe the data
schema and the primary visualization task. This format could easily
be extended with additional attributes and entities. For instance, one
could add additional attributes about a mark such as the font size,
scale, or color scheme. New entities could be legends and axes so
that Draco 2’s constraints could then reason about the position, size,
or other properties of these guides.

3.2 Knowledge Base
Just like its predecessor, Draco uses a collection of hard and soft
constraints over the logical facts to represent design knowledge
guidelines. While the hard constraints span the space of all de-
signs considered valid, the soft constraints define the preferences
over the space to rank these designs. When a user queries with a
partially specified visualization, Draco eliminates ill-formed (e.g.,
using the encoding channel shape for a mark that is not point) or
non-expressive (e.g., aggregating ordinal fields with mean function)
designs with the hard constraints and searches the design space for
the lowest-cost specifications. The Draco cost of a visualization is
the weighted sum of the costs of all violated soft constraints. And
the weights reflect the relative importance of each violation in the

1vega.github.io/vega-lite/docs/resolve.html

https://vega.github.io/vega-lite/docs/resolve.html


total cost. As a starting point, the default knowledge base consists
of constraints adopted from CompassQL rules.

There are two ways to obtain soft constraint weights. First, our
API allows algorithm designers to define their own sets of soft con-
straints and manually assign a weight to each constraint to indicate
their preferences. Second, Draco-Learn can learn weights for exist-
ing soft constraints from ranked pairs of visualizations (the learning
algorithm is the same as in Draco 1 [16]). These pairs could come
from different experimental studies or theoretical rankings.

Draco loads and exposes the knowledge base as answer-
set programs. We use the definitions programs to de-
clare the domains of visualization attributes. For example,
domain((mark,type), (point;bar;line;area;text;tick;rect)).

defines the choices of mark types. To enforce the search space
to follow the correct Draco general description language, we
use the constraints programs. violation(invalid_domain) :-

attribute(P,_,V), domain(P,_), not domain(P,V)., for exam-
ple, allows only valid domain values following the definitions. Then,
we have a generator from the generate programs that sets up the
search space. For example, the rule
{ attribute((N,A),E,V): domain((N,A),V) } = 1 :-

entity(N,_,E), required((N,A)).↪→

required((mark,type)).

requires every mark to have one type from its domain. Finally,
Draco loads the hard and soft constraints as hard and soft programs.
Default soft constraint weights are declared in a separate file, and
can be loaded and assigned to the constraints when a Draco object
is instantiated, which also allows for customized weights. Each
program is a dictionary of blocks consisting of the constraint and
its description. Blocks allow users to pick and choose parts of a
program to filter the knowledge base and access documentation. We
include unit tests for every constraint and the parser that reads the
constraints and documentation from ASP into a Python dictionary.

3.3 Other API and Development Tooling
We provide a well-documented API for interacting with Draco’s
knowledge base, encapsulating core utilities for use, extension, and
customization. To maintain code quality and to make Draco a viable
platform for future research, we follow engineering best practices
(i.e., static type analysis, code linting, enforcement of 100% unit test
coverage, etc.). Here, we present our Python API and briefly discuss
the development tooling we provide. Comprehensive documentation
can be found at dig.cmu.edu/draco2.

Specification Renderer: The Draco specification format pro-
vides an abstract and machine-readable way to express visualizations.
Although, rendered visualization are necessary to efficiently commu-
nicate the specifications. We present a default Vega-Lite-based [17]
renderer. However, the Draco specification format is generalized and
not limited to specific visualization grammars. Therefore, our ren-
derer is extensible such that it comes with an interface from which
custom rendering logic can be implemented with the help of our
supporting documentation.

Debugging and Constraint Weight Tuning Support: To revise
soft constraints and tune weights, the first step is to understand the
existing knowledge base by how it is reflected in the recommended
results. To support interpreting and inspecting Draco’s output, we
provide a debugger module (debug.DracoDebug) to examine which
soft constraints in the knowledge base are violated for a collection
of visualizations, and a plotter module (debug.DracoDebugPlotter)
to visualize the violation vectors as shown in Figure 2. One can
use these components to determine how to adjust the knowledge
base to yield more optimal recommendations, whether by adding or
removing constraints, or fine-tuning the weights.

Web Integration: We made Draco easily web-integrable through
two main approaches: a) Deploy it as a standalone Python app
interfacing via the server module’s web API, or b) Use the Python

Figure 2: visualizing the violation vectors with
debug.DracoDebugPlotter.create_chart. It consists of an
aligned bar chart displaying constraint weights and a heatmap illus-
trating constraint violation frequencies for each chart specification.

API directly on the front-end through our WebAssembly distribution
with the draco-pyodide2 package.

3.4 Comparison of Draco 1 and Draco 2
We compare the API implementation, visualization specification
format and behavior of Draco 1 and Draco 2 in a Jupyter Notebook3

through a series of examples.
Although similar features are supported by APIs of both versions,

Draco 2 proves to be easier to integrate into the Python ecosystem,
and it exposes additional features, such as a debugger module. The
visualization specification format of the two versions differs vastly.
While Draco 1 uses a format tied closely to Vega-Lite, Draco 2
adopts an extensible, visualization-grammar-independent format,
built around the idea of using generic entities and attributes.

To compare the behavior of Draco 1 and Draco 2, we selected 100
visualization pairs from the dataset compiled by Kim and Heer [10]
for graphical perception study and let the systems rank them using
their default knowledge base and constraint weights. Note that
even slight weight changes to the knowledge base can lead to very
different results, however, the two systems agreed on the ranking
86% of the time, indicating a high behavioral similarity. In each
instance of divergent rankings, Draco 2 preferred the visualization
which was also deemed better by the participants of Kim and Heer’s
study.

4 DEMONSTRATION OF DRACO AS A MODELING TOOL

We demonstrate Draco’s capabilities as an effective tool to generate
recommendations, as well as to explore and adapt the knowledge
base. We created a general guide for debugging recommendation
results4. To showcase the procedure and the debugging APIs, we
created a Jupyter Notebook5 that explores the visualization design
space of the Seattle weather dataset6. While in principle this ex-
ploration would have been possible in the original Draco 1 system,
Draco 2’s utilities simplify it significantly.

Draco generates visualization recommendations from incomplete
specifications through the Draco.complete_spec method. The re-
sults might be unsatisfactory for several reasons. When the hard

2npmjs.com/package/draco-pyodide
3dig.cmu.edu/draco2/applications/draco1 vs draco2.html (permalink)
4dig.cmu.edu/draco2/applications/debug draco.html(permalink)
5dig.cmu.edu/draco2/applications/design space exploration.html (perma-

link)
6cdn.jsdelivr.net/npm/vega-datasets@v1.29.0/data/seattle-weather.csv

https://dig.cmu.edu/draco2
https://www.npmjs.com/package/draco-pyodide
https://www.npmjs.com/package/draco-pyodide
https://dig.cmu.edu/draco2/applications/draco1_vs_draco2.html
https://github.com/cmudig/draco2/blob/e2550b12ffd78c22d936027877334017f84c6327/docs/applications/draco1_vs_draco2.ipynb
https://dig.cmu.edu/draco2/applications/debug_draco.html
https://github.com/cmudig/draco2/blob/e2550b12ffd78c22d936027877334017f84c6327/docs/applications/debug_draco.ipynb
https://dig.cmu.edu/draco2/applications/design_space_exploration.html
https://github.com/cmudig/draco2/blob/e2550b12ffd78c22d936027877334017f84c6327/docs/applications/design_space_exploration.ipynb
https://github.com/cmudig/draco2/blob/e2550b12ffd78c22d936027877334017f84c6327/docs/applications/design_space_exploration.ipynb
https://cdn.jsdelivr.net/npm/vega-datasets@v1.29.0/data/seattle-weather.csv


constraints are not adequate, Draco might output ill-defined results.
When the hard constraints are too strong, good candidates might be
filtered out without a chance to be ranked with others. Similarly,
since the soft constraints and their costs determine the ranking of
candidates, there needs to be a suitable degree of differentiation to
distinguish between the candidates. With the following example,
we demonstrate how to iteratively explore and adjust the Draco
knowledge base by modifying the queries and the rules.

Iterating the partial specification query: We start with only
the raw dataset input, modeling the common first step in visual
data exploration. We load the dataset and generate its schema
(name of the columns, their data types, and key statistical prop-
erties) as logical facts with the schema_from_dataframe function.
Then, for the recommendation query, we concatenate the schema
with entity(view,root,v0) and entity(mark,v0,m0)., making
sure that the recommendations have at least one view and use at least
one mark. We generate and render the top recommendations using
complete_spec and AltairRenderer. The top five results encode the
count of records because in general using less encoding is preferred,
and they represent an overview given that less information is spec-
ified by the query. Two of them encode a non-aggregated second
field, weather, via columnar faceting. We also observe seemingly
identical charts with different costs. These are caused by the fact
that there are some entities in the Draco specification such as "task"
whose value influences the cost computed by Clingo, but does not
affect the rendered Vega-Lite specification.

After an initial overview and inspiration, we explore how Draco
can be used to create more targeted outputs. To constrain the desired
design space, we extend the base input specification with additional
facts to target date temporal field and temp_max numeric field in
the target results. We also specify a preference for column-faceted
charts, while allowing our tool to determine other details. As a
result, we obtain charts faceted by the weather field since it is a
categorical variable with low cardinality. And the faceted scatter
plot without binning is preferred to the faceted tick chart where
the temp_max field is binned. Draco produces visualizations from
partial specification based on the fundamental visualization design
guidelines expressed by our knowledge base. We can test more input
variations and compare their costs, for example, by forbidding the
facet and adding another encoding for the weather field that could
be encoded in the color channel.

Inspecting the Knowledge Base: To perform a more thorough
analysis of the recommendations and to validate them against the
design preferences (soft constraints) defined in the knowledge base,
we employ Draco’s debugger module. The DracoDebug module gen-
erates a Pandas DataFrame containing the recommendations, the
violated soft constraints, and their associated weights. We use
DracoDebugPlotter to investigate the violation vector and weights
interactively. We observe that only a small subset of the defined soft
constraints (18 out of 147) impact the recommended charts due to
the overlap between them.

Now, we programmatically synthesize a collection of partial spec-
ifications to explore more possibilities within the design space.
We specify a list of marks ["point", "bar", "line", "rect"],
fields ["weather", "temp_min", "date"] and encoding channels
["color", "shape", "size"] and we enumerate every combina-
tion of them in the query to obtain a variety of designs. We observe
that Draco uses binning, faceting, stacking, and aggregations such as
count and mean in an attempt to recommend meaningful visualiza-
tions. We also observe that some mark-field-channel combinations
such as ("line", "date", "size") do not yield any recommenda-
tions due to violating a hard-constraint, size_without_point_text
in this case, defining that encoding data using the size channel only
works when using point or text as the mark.

The debugger output indicates that 40 of the defined 147 soft
constraints influenced the recommendations from our synthesized

queries, revealing a different design space to target at. From each
specification collection, we gather insights of what combinations
can or cannot be rendered, do the rendered charts seem reasonable,
what are their costs and violation vectors, and do the costs reflect
how they should be ranked in practice. Through this process, we
can confirm how well the knowledge base fits our mental model.
Then, either we learn new design guidelines by verifying them with
credible sources, or we have detected issues to resolve so that we
can improve the knowledge base.

Adjusting the Knowledge Base: Now we demonstrate how to
debug constraint logic, tune weights, and discover new rules to add.
After analyzing the costs and violation vectors with the heatmap
output from the DracoDebugPlotter, we may notice that there are un-
conventional combinations (e.g., ("point", "date", "size") and
("point", "date", "shape")) with low costs, meaning that they
are likely to be ranked higher among all recommendations with the
current knowledge base. By inspecting the pattern in their violation
vectors and how they differ from the others, we might detect poten-
tial errors in the soft constraint definition or weight of constraints
that can be tuned to rank them lower. For example, using the date
field for color or size both violate the soft constraint time_not_x,
which prefers to use the field of type datetime on the x-axis. Hence,
we could increase its weight and see how that affects the results. We
also observe non-expressive designs which share common charac-
teristics not reflected on the violation vector heatmap. This might
indicate design space that the existing knowledge base has yet to
cover. For example, Draco recommended faceted heatmap designs
for the "rect" and "color" combination, and the design is not dis-
couraged by any existing soft constraints. As we decide to add such
a soft constraint, we first assign it a low weight and continue to
increase it to test the changes from re-runs.

In conclusion, we demonstrated how Draco can be an easy-to-use
modeling tool to interact with the knowledge base and generate
visualization recommendations.

5 FUTURE WORK AND CONCLUSION

We believe that Draco is a timely contribution to the visualization
research community. And this implementation gets us closer to
Draco’s original vision of an evolving knowledge base that can
be refined, extended, and tested by researchers and practitioners.
Draco is already being used as a platform for research. Zeng et
al. [26] used Draco to analyze the implication of different graphical
perception studies. Recent Large Language Models (LLMs) open
new opportunities for visualization recommendation with natural
language [3]. Unfortunately, the recommendations from LLMs are
hard to explain, steer, and debug. To decouple the interpretation
of the natural language input and recommendation, we could use
an LLM and Draco together. The LLM could generate a partial
specification and then Draco could complete the specification and
generate a visualization. Another application of Draco could be as
a way to embed visualizations in machine learning models. The
violation of soft constraints of a particular visualization forms a
vector that could be used as a feature in a machine learning model.
These are just some of the potential projects we envision for Draco:
others may extend its model to fine-grained task taxonomies or
interactive charts.

In conclusion, we present a major improvement over Draco to
make it more self-contained, well-documented and extensible. We
believe that these improvements make Draco a solid foundation for
future research.

ACKNOWLEDGMENTS

We thank our labs for their feedback on this system and paper,
especially Manfred Klaffenböck, Torsten Möller, Halden Lin and
Ameya Patil.



REFERENCES

[1] Q. Chen, F. Sun, X. Xu, Z. Chen, J. Wang, and N. Cao. Vizlinter: A
linter and fixer framework for data visualization. IEEE Transactions
on Visualization and Computer Graphics, 28(1):206–216, 2022. doi:
10.1109/TVCG.2021.3114804

[2] Ç. Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati. Foresight:
Recommending visual insights. Proceedings of the VLDB Endowment,
10(12):1937–1940, Aug. 2017. doi: 10.14778/3137765.3137813

[3] V. Dibia. Lida: A tool for automatic generation of grammar-agnostic
visualizations and infographics using large language models. arXiv
preprint arXiv:2303.02927, 2023.

[4] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP
+ control: Preliminary report. CoRR, abs/1405.3694, 2014.

[5] M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in
answer set programming. Theory and Practice of Logic Programming,
11(4-5):821–839, 2011. doi: 10.1017/S1471068411000329

[6] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider. Potassco: The potsdam answer set solving collection.
AI Communications, 24(2):107–124, apr 2011. doi: 10.3233/AIC-2011
-0491

[7] A. K. Hopkins, M. Correll, and A. Satyanarayan. Visualint: Sketchy
in situ annotations of chart construction errors. In Computer Graphics
Forum, vol. 39, pp. 219–228. Wiley Online Library, 2020.

[8] K. Hu, M. Bakker, S. Li, T. Kraska, and C. Hidalgo. VizML: A machine
learning approach to visualization recommendation. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’19, pp. 1–12. Association for Computing Machinery, New York,
NY, USA, 2019. doi: 10.1145/3290605.3300358

[9] A. Key, B. Howe, D. Perry, and C. Aragon. VizDeck: Self-organizing
dashboards for visual analytics. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, p.
681–684. Association for Computing Machinery, New York, NY, USA,
2012. doi: 10.1145/2213836.2213931

[10] Y. Kim and J. Heer. Assessing effects of task and data distribution
on the effectiveness of visual encodings. Computer Graphics Forum,
37(3):157–167, 2018. doi: 10.1111/cgf.13409

[11] H. Li, Y. Wang, S. Zhang, Y. Song, and H. Qu. KG4Vis: A knowl-
edge graph-based approach for visualization recommendation. IEEE
Transactions on Visualization and Computer Graphics, 28(1):195–205,
2022. doi: 10.1109/TVCG.2021.3114863

[12] Y. Luo, X. Qin, N. Tang, and G. Li. DeepEye: Towards automatic data
visualization. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pp. 101–112, April 2018. doi: 10.1109/ICDE.
2018.00019

[13] J. Mackinlay. Automating the design of graphical presentations of
relational information. ACM Transactions on Graphics, 5(2):110–141,
Apr. 1986. doi: 10.1145/22949.22950

[14] J. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic pre-
sentation for visual analysis. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1137–1144, Nov 2007. doi: 10.1109/TVCG
.2007.70594

[15] A. M. McNutt and G. L. Kindlmann. Linting for visualization: Towards
a practical automated visualization guidance system. 2018.

[16] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing visualization design knowledge as constraints:
Actionable and extensible models in draco. IEEE Transactions on
Visualization and Computer Graphics, 25(1):438–448, Jan 2019. doi:
10.1109/TVCG.2018.2865240

[17] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE Transactions on Visu-
alization and Computer Graphics, 23(1):341–350, Jan 2017. doi: 10.
1109/TVCG.2016.2599030

[18] T. Siddiqui, J. Lee, A. Kim, E. Xue, X. Yu, S. Zou, L. Guo, C. Liu,
C. Wang, K. Karahalios, and A. G. Parameswaran. Fast-forwarding to
desired visualizations with zenvisage. In 8th Biennial Conference on
Innovative Data Systems Research, CIDR 2017, Chaminade, CA, USA,
January 8-11, 2017, Online Proceedings. www.cidrdb.org, 2017.

[19] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Poly-
zotis. SeeDB: Efficient data-driven visualization recommendations

to support visual analytics. Proceedings of the VLDB Endowment,
8(13):2182–2193, Sept. 2015. doi: 10.14778/2831360.2831371

[20] L. Wilkinson. The Grammar of Graphics (Statistics and Computing).
Springer-Verlag, Berlin, Heidelberg, 2005.

[21] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Towards a general-purpose query language for visualization
recommendation. In Proceedings of the Workshop on Human-In-the-
Loop Data Analytics, HILDA ’16, pp. 4:1–4:6. ACM, New York, NY,
USA, 2016. doi: 10.1145/2939502.2939506

[22] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. vol. 22, pp. 649–658, Jan 2016. doi:
10.1109/TVCG.2015.2467191

[23] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’17, p.
2648–2659. Association for Computing Machinery, New York, NY,
USA, 2017. doi: 10.1145/3025453.3025768

[24] Z. Zeng and L. Battle. A review and collation of graphical perception
knowledge for visualization recommendation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’23. ACM, New York, NY, USA, 2023. doi: 10.1145/3544548.3581349

[25] Z. Zeng, P. Moh, F. Du, J. Hoffswell, T. Y. Lee, S. Malik, E. Koh,
and L. Battle. An evaluation-focused framework for visualization
recommendation algorithms. IEEE Transactions on Visualization and
Computer Graphics, 28(1):346–356, 2022. doi: 10.1109/TVCG.2021.
3114814

[26] Z. Zeng, J. Yang, D. Moritz, J. Heer, and L. Battle. Too many cooks:
Exploring how graphical perception studies influence visualization
recommendations in draco. IEEE Transactions on Visualization and
Computer Graphics, 2023.

[27] S. Zhu, G. Sun, Q. Jiang, M. Zha, and R. Liang. A survey on automatic
infographics and visualization recommendations. Visual Informatics,
4(3):24–40, 2020. doi: 10.1016/j.visinf.2020.07.002

https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.1109/TVCG.2021.3114804
https://doi.org/10.14778/3137765.3137813
https://doi.org/10.14778/3137765.3137813
https://doi.org/10.14778/3137765.3137813
https://doi.org/10.14778/3137765.3137813
https://doi.org/10.14778/3137765.3137813
https://doi.org/10.14778/3137765.3137813
https://doi.org/10.14778/3137765.3137813
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694
https://doi.org/10.1017/S1471068411000329
https://doi.org/10.1017/S1471068411000329
https://doi.org/10.1017/S1471068411000329
https://doi.org/10.1017/S1471068411000329
https://doi.org/10.1017/S1471068411000329
https://doi.org/10.1017/S1471068411000329
https://doi.org/10.1017/S1471068411000329
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/10.1145/2213836.2213931
https://doi.org/https://doi.org/10.1111/cgf.13409
https://doi.org/https://doi.org/10.1111/cgf.13409
https://doi.org/https://doi.org/10.1111/cgf.13409
https://doi.org/https://doi.org/10.1111/cgf.13409
https://doi.org/https://doi.org/10.1111/cgf.13409
https://doi.org/https://doi.org/10.1111/cgf.13409
https://doi.org/10.1111/cgf.13409
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1109/ICDE.2018.00019
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p43-siddiqui-cidr17.pdf
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1145/3544548.3581349
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1109/TVCG.2021.3114814
https://doi.org/10.1016/j.visinf.2020.07.002
https://doi.org/10.1016/j.visinf.2020.07.002
https://doi.org/10.1016/j.visinf.2020.07.002
https://doi.org/10.1016/j.visinf.2020.07.002
https://doi.org/10.1016/j.visinf.2020.07.002
https://doi.org/10.1016/j.visinf.2020.07.002
https://doi.org/10.1016/j.visinf.2020.07.002

	Introduction
	Background and Related Work
	Components of Draco
	Draco Specification Format
	Nested specification format with Entities and Attributes
	Encoding Visualizations in Draco

	Knowledge Base
	Other API and Development Tooling
	Comparison of Draco 1 and Draco 2

	Demonstration of Draco as a modeling tool
	Future Work and Conclusion

