
Engraft: An API for Live, Rich, and Composable Programming
Joshua Horowitz

joshuah@alum.mit.edu
University of Washington
Seattle, United States

Jeffrey Heer
jheer@uw.edu

University of Washington
Seattle, United States

ABSTRACT
Live & rich tools can support a diversity of domain-specific pro-
gramming tasks, from visualization authoring to data wrangling.
Real-world programming, however, requires performing multiple
tasks in concert, calling for the use of multiple tools alongside con-
ventional code. Programmers lack environments capable of com-
posing live & rich tools to support these situations. To enable this
composition, we contribute Engraft, a component-based API that
allows live & rich tools to be embedded within larger environments
like computational notebooks. Through recursive embedding of
components, Engraft enables several new forms of composition:
not only embedding tools inside environments, but also embedding
environments within each other and embedding tools and envi-
ronments in the outside world, including conventional codebases.
We demonstrate Engraft with examples from diverse domains, in-
cluding web-application development, command-line scripting, and
physics education. By providing composability, Engraft can help
cultivate a cycle of use and innovation in live & rich programming.

CCS CONCEPTS
• Human-centered computing→ Graphical user interfaces;
• Software and its engineering → Integrated and visual de-
velopment environments; Application specific development
environments.

KEYWORDS
live programming, visual programming, end-user programming,
composition, computational notebooks, GUIs
ACM Reference Format:
Joshua Horowitz and Jeffrey Heer. 2023. Engraft: An API for Live, Rich,
and Composable Programming. In The 36th Annual ACM Symposium on
User Interface Software and Technology (UIST ’23), October 29–November 01,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3586183.3606733

1 INTRODUCTION
Although the most familiar interface for editing programs is a plain-
text editor, alternatives to static textual code have a long history.
These alternatives range from spreadsheets [28] to block-based
programming [42] to computational notebooks [20] and beyond.
In recent decades, a distinctive new category of non-static-text

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606733

programming tools has emerged. These tools bring tailored in-
terfaces and interactions to tasks which previously would have
required traditional code. For instance, Gneiss [4] lets users make
web applications through direct manipulation centered around a
spreadsheet. Lyra [43] lets authors create expressive data visual-
izations with drag-and-drop interactions. And Wrangler [17] lets
users define complex scripts to clean up tabular data by directly
manipulating a table. These are examples of live and rich tools: live
in the sense that their editing interfaces incorporate feedback from
a running program, and rich in the sense that they let programmers
edit programs using domain-specific visual representations and
interactions instead of code [14].

Live & rich tools make programming tasks direct, visible, and ap-
proachable. However, while particular live & rich tools have found
niches of use, their role in programming at large remains marginal.
Given the success of specialized direct-manipulation interfaces in
everyday computing, this fact is striking. What fundamental lim-
itations do live & rich programming tools have today which, if
addressed, might bring them into broader use?

A major factor limiting use of live & rich programming tools is
their present lack of composability [14]. Conventional programming
derives its power in large part from composability, as programmers
freely combine libraries, APIs, and language features to accomplish
their goals. However, composability like this does not exist in the
world of user interfaces, including live & rich tools.

As an example, suppose a digital artist wants to make a website
that displays summaries of randomWikipedia articles.1 This project
involves multiple steps:

(1) Call the Wikipedia API to get raw data about articles.
(2) Process a JSON response to extract relevant information.
(3) Format this information into an attractive web page.

This is a heterogeneous workflow. We can imagine separate live &
rich tools for each of these steps, like a tool which displays a JSON
structure and lets a user pick the information they want (for step 2),
and a tool which lets a user build a data-backed web page through
direct manipulation (for step 3). Could the artist use such tools
together to accomplish their larger goal? Right now, they cannot.
Ad-hoc approaches are possible, including tools that generate code
or hard-wired tool assemblies for specific workflows, but each gives
up either the benefits of liveness or the flexibility of open-ended
composition.

A practical programming system for live & rich programming
must provide environments, such as computational notebooks,
where domain-specific tools can be freely composed. This is compo-
sition of tools in environments. While this form of composition
is significant and necessary, it is only the first step. Single envi-
ronments reach a limit of expressivity when a situation calls for

1This example is inspired by a live-tweeted coding adventure described in Pipkin [36].

https://orcid.org/0000-0002-5154-9277
https://orcid.org/0000-0002-6175-1655
https://doi.org/10.1145/3586183.3606733
https://doi.org/10.1145/3586183.3606733
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3586183.3606733


UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

Tools in environments. Live & rich tools
can be joined together in a shared environ-
ment, where liveness between tools can be
maintained.

Environments in environments. Environ-
ments can embed into other live environ-
ments, representing multiple levels in the
programming process with nested scopes.

Tools and environments in the outside
world. Environments containing live & rich
tools can be embedded into codebases, ap-
plications, and other parts of the computing
world.

Figure 1: Three forms of composition made possible with
Engraft.

nested structures like functions, loops, or conditionals. To use live
& rich tools and environments inside these structures, we need
the ability to nest environments into one another the same way
traditional code is nested. This is composition of environments
in environments. Finally, for the programs we make with these
tools and environments to provide value in real-world contexts, we
need to be able to connect themwith existing programming activity,
such as work in conventional codebases. This is composition of
tools and environments in the outside world.

No programming system is available today which enables all
three of these forms of composition. Without such a system, live &
rich tools are limited in the real-world situations they can support.

In this paper, we present Engraft2, a component-based API for
interactive programming on the web platform which makes all
three forms of composition possible. Live & rich tools implemented
as Engraft components can be hosted together within live envi-
ronments like notebooks. In this way, disparate task-specific tools
can be joined together to solve problems that no single tool could
solve alone, while maintaining liveness between tools. Furthermore,
Engraft allows not just tools but environments to be implemented
as components, making recursive embedding of tools and environ-
ments possible and enabling all three forms of composition.

In summary, this paper describes the following contributions:
• We articulate three forms of composition that are necessary
for live & rich programming to match conventional program-
ming in expressiveness and practical utility (§2.3).

• We present the design of Engraft, a functional API that rep-
resents both tools and environments with a uniform compo-
nent interface (§3). Through recursive embedding, this API
enables all three forms of composition.

• We present our open-source implementation of this API, to-
gether with numerous example components that showcase

2Grafting is “a horticultural technique whereby tissues of plants are joined so as to
continue their growth together” [53]. This provides an apt analogy for the way Engraft
allows trees of live & rich tools and environments to work together.

Figure 2: Pairwise and three-way intersections between live-
ness, richness, and composability.

interaction styles that might be used in future tools & envi-
ronments (§5). This implementation includes a new library
for incremental computation which enables efficient updates
to Engraft components while preserving Engraft’s functional
semantics (§5.2).

• We evaluate Engraft through a range of demonstrations (§4),
as well as with a heuristic analysis based on Jakubovic et
al.’s “Technical Dimensions of Programming Systems” [15]
(§6)

2 BACKGROUND
Engraft brings new forms of composition to programming systems
at the intersection of liveness and richness: tools like Gneiss [4], Lyra
[43], and Wrangler [17]. In this section, we review the concepts
of liveness and richness, the challenges of composing live & rich
systems, and efforts made so far to overcome these challenges. (Our
presentation here roughly follows that of Horowitz & Heer [14].)

2.1 Liveness & Richness
The term “live” refers to programming systems which “provide
immediate feedback on the dynamic behavior of a program even
while programming” [41].3 Within this broad definition, liveness
can take many forms. Inline displays of run-time values and behav-
ior can be brought into traditional code editors [22, 40]. Inspired
by spreadsheets, computational notebooks like Jupyter [20] and
Observable [29] separate computations into cells which each show
their own output. Farther from traditional code, we find structured
editors which integrate live feedback into an interface that directly
manipulates an underlying AST [8, 13, 24].

Gneiss, Lyra, and Wrangler, the tools we opened this paper with,
are also live. Indeed, their liveness is a crucial part of their designs.
Each is driven by concrete input data and shows the effects of
3The use of “liveness” as a term of art dates back at least to Tanimoto [50].



Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

programmers’ actions on this data immediately. However, while
the examples of programming systems listed in the last paragraph
provide liveness in the context of textual code or an analogous
symbolic interface, these three tools do not. Instead, each is based
around graphical representations and direct-manipulation interac-
tions specifically crafted for its domain. This suggests there is a
second quality these tools share which they combine synergetically
with liveness.

Horowitz & Heer [14] proposes “richness” as a name for this
second quality, stating as a definition that “[a] programming system
embodies richness insofar as it allows programmers to edit pro-
grams through visualizations and interactions that are tailor-made
to the tasks, domains, and contexts they work in”. Richness is not a
subset or superset of liveness, but is rather an independent quality.4
When richness and liveness are combined, new designs become
possible. One particularly compelling possibility is programming by
demonstration (PbD) [6]. This refers to programming systems that
let programmers act directly on concrete data, with the program-
ming system generalizing from this demonstration to new data,
thereby creating a new program. Gneiss, Lyra, and Wrangler all
qualify, at least in part, as PbD systems. Other live & rich tools, like
InterState [35] and Object-Oriented Drawing [55], follow non-PbD
paths, maintaining symbolic forms of expression but augmenting
them with live feedback and domain-specific interactions.

2.2 Composability of Live & Rich Tools
The development of live & rich tools presents a unique opportu-
nity to bring the ease-of-use and fluid productivity of application
software into the world of programming. Our work on Engraft
began with the realization that live & rich tools are generally not
composable, undermining this opportunity.

In §1, we gave an example of a digital artist making a website
driven by the Wikipedia API. Their work can be broken into mul-
tiple steps, each of which could be compellingly served by a live
& rich tool. However, there is no environment available today in
which such tools can be integrated. Live & rich tools (including
Gneiss, Lyra, and Wrangler) are generally implemented as stand-
alone application software, as this gives them full control over what
graphical representations and interactions they use. But operating
systems provide only manual forms of data flow between graphi-
cal applications, such as copy-paste and loading and saving files.
Manual composition is slow and tedious. Furthermore, effects of
changes in an “upstream” tool will only be visible in “downstream”
tool after the user manually moves data between them. This means
that even if programmers have liveness within their tools, they will
lack liveness between their tools.

Some projects have tried to achieve liveness between rich tools
by pre-packaging a set of tools for a specific domain into a sin-
gle application. Gneiss [4] can be viewed as an example of this
pattern, as it combines three tools, each of which might be useful
by itself. Bundles like this can help users whose needs lie along
the “happy path” of the application’s design, but the moment their
needs diverge, the bundle will no longer be usable. The limitations
4Richness without liveness can take the form of “visual syntax” – directly editable
domain-specific representations which replace certain instances of traditional code, as
can be found in the visual macro system for Racket described in Andersen et al. [1],
Graphite [34], and MPS [16].

of pre-bundled applications are highlighted by a comparison to tra-
ditional programming, where libraries can be composed together
at will.

To be clear, prior efforts are only limited by this lack of compos-
ability when they combine liveness and richness. Traditional code
(neither live nor rich) is pervasively composable. Live-but-not-rich
systems like Projection Boxes [22] extend traditional code with live
feedback and rich-but-not-live systems like the visual macro system
for Racket [1] extend code with graphical interactions, all without
losing the composability of code. There are, however, precious few
systems that combine liveness and richness without compromising
composability.5 The primary goal of Engraft is to overcome this
limitation and make live, integrated composition of live & rich tools
possible.

2.3 mage and Three Forms of Composition
The key idea of Engraft is that, by representing live & rich tools
and environments through a shared “component” interface, we can
enable not only composition of tools in environments, but also envi-
ronments in environments and tools and environments in the outside
world. “Tools” here refers to live & rich tools. “Environments” refers
to live-programming systems that make it possible to compose
separate bits of computation together in a live, integrated way. Our
central examples of environments are computational notebooks
like Jupyter [20] and Observable [29], but we are also inspired by
divergent approaches like Natto [47], which spreads code cells out
on a flexible two-dimensional canvas.

Environments like these provide a natural entry-point for live &
rich tools. If cells of code can be composed together in environments,
perhaps live & rich tools could take the place of code in these cells.
mage [18] is a system based on this insight, aiming to provide
“smooth transitions between GUI and code work” by embedding
live & rich tools into Jupyter. It enables composition of tools in
environments, at least the specific environment of Jupyter. Looking
more closely, the example of mage shows how this one form of
composition only goes so far, and how we need to support two
additional forms of composition that mage does not provide.

Environments in environments. If live & rich tools can only
be embedded into cells of a single notebook, they can only express
a “flat” structure. Suppose a Jupyter user has an array of complex
data elements and they want to process each element to obtain a
new version of the array. In Jupyter, they can write a cell that does
this with a “map” operator:
new_list = map(

lambda element: step3(step2(step1(element))),
old_list

)

Their per-item processing function consists of multiple function-
call steps. A selling point of a computational notebook is that it
can split separate steps into separate cells, providing visibility into
intermediate values. But because this map operation needs to be
contained within a single cell, the benefits of visibility that Jupyter

5We direct the reader to Horowitz & Heer [14] for further analysis of the boundaries
of liveness, richness, and composability. This includes discussion of the failure of most
“visual programming languages” (such as Pure Data [39] and Lively Fabrik [23]) to be
truly rich.



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

offers are not available here. Furthermore, if they are using mage,
the user is unable to use live & rich tools inside this map operation,
because live & rich tools can only exist on the top, cell level of
the notebook. We need a way to get notebooks, and live & rich
tools within them, inside this map operation, thereby nesting an
environment within another environment.

Tools and environments in the outside world. The second
limitation of the mage approach is even simpler. mage tools can
only be used in Jupyter, and Jupyter cannot be integrated into larger
computational systems. If live & rich tools can only be used inside of
closed systems like Jupyter, they cannot be gradually incorporated
into existing programming activities, severely limiting use. We call
this the composition of tools and environments in the outside world.

2.4 Livelits
The second project most similar to Engraft in its motivations and
design is livelits [32]. Livelits extends Hazel [33], “a live functional
programming environment designed around hole-driven develop-
ment” with “user-defined GUIs embedded persistently into code”
[32]. Unlike mage tools, livelits are nestable within one another
and inside Hazel programming constructs. This means that livelits
achieves environment-in-environment composition, at least for
the single environment of Hazel. However, new programming en-
vironments cannot be defined as livelits, because livelits’ typing
and binding disciplines are not expressive enough to represent
them. For similar reasons, programming-by-demonstration tools
like Gneiss, Lyra, and Wrangler cannot currently be implemented
as livelits. In keeping with the name “live literals”, livelits have so
far been restricted to widgets like sliders, color pickers, and numeric
arrays. As we will demonstrate in §4, Engraft supports a broader
range of components, from nestable environments like notebook
and notebook-canvas to programming-by-demonstration tools like
extractor and formatter.

So far, livelits have not made contact with environment-in-
the-outside-world composition, as they are part of Hazel, a self-
contained research platform. In contrast, Engraft has prioritized
direct integration with existing development environments, from
traditional codebases to the UNIX shell (as we show in §4.3). In this
way, Engraft can bring live & rich tools to places where program-
ming activity is already happening and grow through contact with
authentic use.

3 THE ENGRAFT ARCHITECTURE
This section presents a high-level overview of the architecture and
design decisions that define Engraft. In §4, we show through demon-
stration how this architecture makes new forms of composition
possible. In §5, we present technical details on the Engraft API.

The Engraft API describes a relationship between a component
and its host. The prototypal model for this interface is the rela-
tionship between a live & rich tool (as component) and the live
environment it is embedded within (as host). For a live environment
like a notebook to host a live & rich tool, it must provide the tool
with external context like the values of variables fed into the tool
as input. In return, the tool must provide the environment with the
output it computes, as well as with a user interface the environment
can embed in a cell and present to a user. This exchange defines

Figure 3: Through a uniform component/host interface, En-
graft enables three forms of composition.

the responsibilities of an Engraft component. As we will describe
in §5, an Engraft component fulfills these responsibilities with a
run function. By calling a tool’s run function, an environment can
embed it. By calling multiple tools’ run functions, passing the out-
put of one tool to the input of another, an environment can wire
these tools together. This is how Engraft enables live composition
of tools in environments (Figure 3, top-left).

By itself, an environment hosting tools creates only a “flat” struc-
ture, and cannot bring live & rich tools into nested structures like
loops and function definitions (see §2.3). Engraft solves this prob-
lem through recursive embedding. Environments can implement the
component side of the Engraft API, thereby becoming components
themselves which can be embedded inside of other components.
With the aid of additional components, such as map (a component
which applies a child component to every element of an array; see
§4.2), this brings live environments and tools into all parts of the
programming process. This is how Engraft enables live composition
of environments in environments (Figure 3, top-right).

Finally, the component/host interface can be used to embed
assemblies of tools and environments into pre-existing contexts,
like conventional codebases. Any JavaScript code, including non-
graphical software, can act as a host to Engraft components. This
is how Engraft enables live composition of tools and environments
in the outside world (Figure 3, bottom).

Although tools and environments play different roles in user
workflows, Engraft makes no distinction between them. Both are
components, and implement the same component interface. This
uniformity makes it easy for Engraft to accommodate diverse forms
of composition.

In the remainder of this section we outline four more important
decisions we made while designing the Engraft API.

Engraft is built on the web platform. A large part of the
computing world now exists on the web platform, and Engraft can
be composed together with this existing activity in numerous ways.



Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Engraft’s use of the web platform also supports the recursive em-
bedding of components: Engraft components can host one another
because they are both implemented on the web platform and hosted
by the web platform. Systems like mage [18], which do not support
open-ended embedding of tools on the web, lack the ability to be
nested in this way.

The Engraft API is functional. A component’s host provides
it with variables bound to JavaScript values. The component in turn
returns a new value. Extending this pattern through composition,
we obtain a reactive dataflow, which has a legacy of ease-of-use
and flexible composability in contexts ranging from spreadsheets
to React [26]. A value-oriented paradigm also presents a natural
foundation for live visibility: just show the values. (Performance
challenges often accompany the use of functional programming in
interactive contexts. §5.2 describes how we addressed those chal-
lenges in Engraft with a new library for incremental computation.)

Engraft components are not required to generate or edit
underlying textual code. In Engraft, a component’s underlying
specification is not traditional code, but a serializable JavaScript
object we call its program. The creator of a component has full
control over the form of this program; to the API, the program is
opaque data. This stands in contrast to a common approach (fol-
lowed by, e.g., mage) where a live & rich tool generates source code
defining its computational behavior, and might even be required
to re-parse this code when it is manually edited by a user. The
“grain” of systems where tools read and write textual code is for
tools to follow pre-existing code patterns. With Engraft, we instead
want to support live-and-rich-first tool design, untethered from the
constraints and idioms of static text.

Engraft components can be run without being rendered.
As part of running, a component offers its host a way to render the
component’s UI. In many situations, the host will not render this
UI, such as when a codebase embeds a live tool in production or
when a component like map only renders one example instance of
its body. By letting components run invisibly, Engraft supports a
broad range of practical computational uses, not only interactive
use by a programmer.

4 LIVE COMPOSITIONWITH ENGRAFT
In this section, we show and describe the end-user experience of
building programs with Engraft. In three sub-sections, we demon-
strate how Engraft makes three forms of composition possible. Later,
in §5, we discuss the implementation of the underlying Engraft API.

4.1 Tools In Environments

Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Engraft is built on the web platform. A large part of the
computing world now exists on the web platform, and Engraft can
be composed together with this existing activity in numerous ways.
Engraft’s use of the web platform also supports the recursive em-
bedding of components: Engraft components can host one another
because they are both implemented on the web platform and hosted
by the web platform. Systems like mage [? ], which do not support
open-ended embedding of tools on the web, lack the ability to be
nested in this way.

The Engraft API is functional. A component’s host provides
it with variables bound to JavaScript values. The component in turn
returns a new value. Extending this pattern through composition,
we obtain a reactive dataflow, which has a legacy of ease-of-use
and flexible composability in contexts ranging from spreadsheets
to React [? ]. A value-oriented paradigm also presents a natural
foundation for live visibility: just show the values. (Performance
challenges often accompany the use of functional programming in
interactive contexts. §?? describes how we addressed those chal-
lenges in Engraft with a new library for incremental computation.)

Engraft components are not required to generate or edit
underlying textual code. In Engraft, a component’s underlying
specification is not traditional code, but a serializable JavaScript
object we call its program. The creator of a component has full
control over the form of this program; to the API, the program is
opaque data. This stands in contrast to a common approach (fol-
lowed by, e.g., mage) where a live & rich tool generates source code
defining its computational behavior, and might even be required
to re-parse this code when it is manually edited by a user. The
“grain” of systems where tools read and write textual code is for
tools to follow pre-existing code patterns. With Engraft, we instead
want to support live-and-rich-first tool design, untethered from the
constraints and idioms of static text.

Engraft components can be run without being rendered.
As part of running, a component offers its host a way to render the
component’s UI. In many situations, the host will not render this
UI, such as when a codebase embeds a live tool in production or
when a component like map only renders one example instance of
its body. By letting components run invisibly, Engraft supports a
broad range of practical computational uses, not only interactive
use by a programmer.

4 LIVE COMPOSITIONWITH ENGRAFT
In this section, we show and describe the end-user experience of
building programs with Engraft. In three sub-sections, we demon-
strate how Engraft makes three forms of composition possible. Later,
in §??, we discuss the implementation of the underlying Engraft
API.

4.1 Tools In Environments
Let us return to the example of a digital artist who wants to make a
website that displays summaries of random Wikipedia articles, ex-
amining how this artist might accomplish their goal by composing
live tools together in a live environment with Engraft.

They start by loading Graft Garden, a web application which
provides a convenient starting point for using Engraft tools. Once
the artist tells Graft Garden to make a new page, they are presented

Figure 4: The artist starting out on Graft Garden. (A) A new
Graft Garden page centered around an empty slot. (B) The
artist begins to type /notebook into the slot, and an autocom-
plete menu appears. (C) The artist selects the autocomplete
option, and a notebook is inserted into the slot in place of the
code editor.

with a blank page (Figure ??A), containing a single small code-editor
box, called a slot. This slot is the starting point for everything they
will do.

The artist knows that their project will involve combining to-
gether multiple steps. So they would like to work in a live envi-
ronment that allows multiple computational steps to be combined
together in fluid and flexible ways. They pick the environment
most familiar to them: a computational notebook. They do this by
beginning to type /notebook in the slot, and selecting ‘notebook’
from the autocomplete menu that pops up (Figure ??B). Once they
do this, the slot is replaced with an Engraft tool called notebook
(Figure ??C). This is a reactive notebook in which a user can type
code snippets into cells. The notebook evaluates these snippets and
shows their resulting values alongside the cells (Figure ??). Cells
receive default names (like in a spreadsheet), but can be renamed.
Cells can refer to one another, and the notebook ensures that a cell
is re-evaluated when one of its references changes.

The first thing the artist needs to do in this notebook is get hold
of data from the Wikipedia API. Rather than write networking code
directly, they type /request into the first cell, and select ‘request’
from the autocomplete menu that pops up. This inserts a request

Let us return to the example of a digital artist who wants to make a
website that displays summaries of random Wikipedia articles, ex-
amining how this artist might accomplish their goal by composing
live tools together in a live environment with Engraft.

They start by loading Graft Garden, a web application which
provides a convenient starting point for using Engraft tools. Once
the artist tells Graft Garden to make a new page, they are presented
with a blank page (Figure 4A), containing a single small code-editor
box, called a slot. This slot is the starting point for everything they
will do.

Figure 4: The artist starting out on Graft Garden. (A) A new
Graft Garden page centered around an empty slot. (B) The
artist begins to type /notebook into the slot, and an autocom-
plete menu appears. (C) The artist selects the autocomplete
option, and a notebook is inserted into the slot in place of the
code editor.

The artist knows that their project will involve combining to-
gether multiple steps. So they would like to work in a live envi-
ronment that allows multiple computational steps to be combined
together in fluid and flexible ways. They pick the environment
most familiar to them: a computational notebook. They do this by
beginning to type /notebook in the slot, and selecting ‘notebook’
from the autocomplete menu that pops up (Figure 4B). Once they
do this, the slot is replaced with an Engraft tool called notebook
(Figure 4C). This is a reactive notebook in which a user can type
code snippets into cells. The notebook evaluates these snippets and
shows their resulting values alongside the cells (Figure 5). Cells
receive default names (like in a spreadsheet), but can be renamed.
Cells can refer to one another, and the notebook ensures that a cell
is re-evaluated when one of its references changes.

The first thing the artist needs to do in this notebook is get hold
of data from the Wikipedia API. Rather than write networking code
directly, they type /request into the first cell, and select ‘request’
from the autocomplete menu that pops up. This inserts a request
tool into the cell. The notebook’s cells are slots, just like the root
slot the artist used to invoke the notebook, so they can also be used
to insert Engraft components.



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

Figure 5: Example usage of a notebook. Output is shown on
the right-hand side with a green background. The second cell
(B) refers to the first (A).

request has two slots: one to provide a URL and one to provide
an object of query parameters (Figure 6A). As the artist skims
the Wikipedia API documentation, they experiment with different
query parameters. The tool re-sends the querywith every change, so
the artist can see the effects of their changes live. Just like a snippet
of code typed into a computational notebook, request produces
output, which is returned to the notebook that hosts it. The notebook
can then display this output live, and make it available to other
cells by reference. Examining the output, and playing with query
parameters, the artist eventually finds a configuration they like.
It delivers five random articles, complete with titles and HTML-
summary “extracts”.

While the artist can see the data they want in the API response,
the task of extracting it out of the complicated JSON structure is
a bit intimidating. Fortunately, they know a second tool, called
extractor6 (Figure 6B). This tool accepts JSON data as input and
presents an interface that allows the user to select data values
by clicking on those values directly. The tool generalizes from
these clicks, providing an output structure with the values the
user wants. The result is equivalent to writing code that loops
over arrays and objects with chains of property accesses. This
tool is more interesting, in its liveness, than request. While request
offered a convenient form interface for specifying a request, that
interface was still structurally similar to working with code. In
contrast, extractor’s interface relies on live input data to support
programming-by-demonstration.

Now that the artist has extracted the data they care about, they
want to reshape it into an attractive interface. For this they use a
formatter tool7 (Figure 6C). Given a JavaScript data structure, for-
matter automatically suggests a way to format the data into HTML
output. It also provides direct-manipulation handles the user can
use to choose different options for this formatting. Like extractor,
formatter uses live data to power a programming-by-demonstration
interface. The artist hands formatter the output of extractor as in-
put. They click on bits of the data structure and use Formatter’s
inspector palette to assign styles, turning the raw data into legible
HTML.

6extractor is similar to an interaction found in Gneiss [4].
7formatter is similar to a (second) interaction found in Gneiss [4], and is also inspired
by Yoshiki Schmitz’s work [45].

Last, the artist wants to add a header to the page. They know a
bit of HTML, so they add a new cell to the notebook that they keep
as a code editor, rather than invoking a rich tool. They type JSX
markup in to this cell to add the header (Figure 6D).

The artist has now built a live computational notebook, consist-
ing of four cells: (A) a request tool to get data from the Wikipedia
API, (B) an extractor tool to pluck out the data they need in a clean
format, (C) a formatter tool to shape the data into an HTML docu-
ment with the appearance they desire, and (D) a slot tool to include
a bit of traditional code.

The last step is to “deploy” this living program to awebsite, where
a visitor will receive their own random set of articles. Conveniently,
Graft Garden, the web application that has hosted their work so far,
does this automatically. The output of the last cell in the notebook
(the slot with HTML, in this case) is returned back to Graft Garden.
Graft Garden provides a shareable link that displays this final return
value without tool UI (Figure 7). Note that the Wikipedia articles
shown here are different than above, as the artist’s program runs
anew every time this page is loaded.

In this example, the artist does most of their work with live &
rich tools and only uses small bits of code. Other situations will
instead call for mostly code, with just one or two live & rich tools
invoked. Engraft supports use-cases all along this spectrum. Our
goal is not to completely replace conventional programming with
visual programming, but to open up a new possibility: replacing
particular steps with interactive, direct-manipulation tools.

In the story above, the artist chose to compose their tools inside
of a notebook. This is not the only live environment an Engraft
user may choose to use. For different tasks, different environments
may be preferred. Figure 8 shows how the tools the artist used
in the notebook could instead be embedded in a new environment
(loosely modeled on Natto [46]8), called a notebook-canvas. Cells on
a notebook-canvas work the same way as on a notebook, but they
can be freely dragged around a canvas and resized however the user
likes. A user might choose to use notebook-canvas over notebook
for a number of reasons: higher visual density, space to organize
nonlinear data-flows, and a looseness that avoids some “negative
effects of prematurely or unnecessarily imposing a structure” [49].
The user has this choice because Engraft decouples tools from
environments, making it possible to choose the right environment
for the job without losing access to the right tools.

4.2 Environments In Environments

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

Figure 5: Example usage of a notebook. Output is shown on
the right-hand side with a green background. The second cell
(B) refers to the first (A).

tool into the cell. The notebook’s cells are slots, just like the root
slot the artist used to invoke the notebook, so they can also be used
to insert Engraft components.

request has two slots: one to provide a URL and one to provide
an object of query parameters (Figure ??A). As the artist skims
the Wikipedia API documentation, they experiment with different
query parameters. The tool re-sends the querywith every change, so
the artist can see the effects of their changes live. Just like a snippet
of code typed into a computational notebook, request produces
output, which is returned to the notebook that hosts it. The notebook
can then display this output live, and make it available to other
cells by reference. Examining the output, and playing with query
parameters, the artist eventually finds a configuration they like.
It delivers five random articles, complete with titles and HTML-
summary “extracts”.

While the artist can see the data they want in the API response,
the task of extracting it out of the complicated JSON structure is
a bit intimidating. Fortunately, they know a second tool, called
extractor6 (Figure ??B). This tool accepts JSON data as input and
presents an interface that allows the user to select data values
by clicking on those values directly. The tool generalizes from
these clicks, providing an output structure with the values the
user wants. The result is equivalent to writing code that loops
over arrays and objects with chains of property accesses. This
tool is more interesting, in its liveness, than request. While request
offered a convenient form interface for specifying a request, that
interface was still structurally similar to working with code. In
contrast, extractor’s interface relies on live input data to support
programming-by-demonstration.

Now that the artist has extracted the data they care about, they
want to reshape it into an attractive interface. For this they use a
formatter tool7 (Figure ??C). Given a JavaScript data structure, for-
matter automatically suggests a way to format the data into HTML
output. It also provides direct-manipulation handles the user can
use to choose different options for this formatting. Like extractor,
formatter uses live data to power a programming-by-demonstration
interface. The artist hands formatter the output of extractor as in-
put. They click on bits of the data structure and use Formatter’s

6extractor is similar to an interaction found in Gneiss [? ].
7formatter is similar to a (second) interaction found in Gneiss [? ], and is also inspired
by Yoshiki Schmitz’s work [? ].

inspector palette to assign styles, turning the raw data into legible
HTML.

Last, the artist wants to add a header to the page. They know a
bit of HTML, so they add a new cell to the notebook that they keep
as a code editor, rather than invoking a rich tool. They type JSX
markup in to this cell to add the header (Figure ??D).

The artist has now built a live computational notebook, consist-
ing of four cells: (A) a request tool to get data from the Wikipedia
API, (B) an extractor tool to pluck out the data they need in a clean
format, (C) a formatter tool to shape the data into an HTML docu-
ment with the appearance they desire, and (D) a slot tool to include
a bit of traditional code.

The last step is to “deploy” this living program to awebsite, where
a visitor will receive their own random set of articles. Conveniently,
Graft Garden, the web application that has hosted their work so far,
does this automatically. The output of the last cell in the notebook
(the slot with HTML, in this case) is returned back to Graft Garden.
Graft Garden provides a shareable link that displays this final return
value without tool UI (Figure ??). Note that the Wikipedia articles
shown here are different than above, as the artist’s program runs
anew every time this page is loaded.

In this example, the artist does most of their work with live &
rich tools and only uses small bits of code. Other situations will
instead call for mostly code, with just one or two live & rich tools
invoked. Engraft supports use-cases all along this spectrum. Our
goal is not to completely replace conventional programming with
visual programming, but to open up a new possibility: replacing
particular steps with interactive, direct-manipulation tools.

In the story above, the artist chose to compose their tools inside
of a notebook. This is not the only live environment an Engraft
user may choose to use. For different tasks, different environments
may be preferred. Figure ?? shows how the tools the artist used
in the notebook could instead be embedded in a new environment
(loosely modeled on Natto [? ]8), called a notebook-canvas. Cells on
a notebook-canvas work the same way as on a notebook, but they
can be freely dragged around a canvas and resized however the user
likes. A user might choose to use notebook-canvas over notebook
for a number of reasons: higher visual density, space to organize
nonlinear data-flows, and a looseness that avoids some “negative
effects of prematurely or unnecessarily imposing a structure” [?
]. The user has this choice because Engraft decouples tools from
environments, making it possible to choose the right environment
for the job without losing access to the right tools.

4.2 Environments In Environments
Live environments are powerful building blocks for live program-
ming. The above example uses a single notebook to link together
four tools. However, as we discussed in §??, one environment by
itself is often not enough. A single environment is flat, and pro-
gramming contains nested structures where a single environment
cannot reach. Engraft allows environments to be built as compo-
nents, meaning that they can be threaded through the hierarchical
structures of programming along with the live & rich tools they
host.

8A more faithful adaptation of Natto, which could also be implemented with Engraft,
would connect cells with wires rather than references.

Live environments are powerful building blocks for live program-
ming. The above example uses a single notebook to link together
four tools. However, as we discussed in §2.3, one environment by
itself is often not enough. A single environment is flat, and pro-
gramming contains nested structures where a single environment
cannot reach. Engraft allows environments to be built as compo-
nents, meaning that they can be threaded through the hierarchical
structures of programming along with the live & rich tools they
host.

For instance, we have built a tool called map, designed to support
a user mapping through an array. map takes an input array and

8A more faithful adaptation of Natto, which could also be implemented with Engraft,
would connect cells with wires rather than references.



Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 6: Graft Garden editing the completed “Randompedia” project. Four tools are composed together in a notebook to achieve
the artist’s goal: (A) request, (B) extractor, (C) formatter, and (D) slot (a traditional code editor).



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

Figure 7: The artist’s final creation: a dynamic website invisi-
bly powered by their Engraft program.

Figure 8: The tools from Figure 6, composed together in a
notebook-canvas rather than a notebook.

provides a slot for a “per-item tool”. map shows the per-item tool
being run on a single element of the array, so that the user has
concrete data to inform their experience of live-programming the
per-item tool. The user can use map’s interface to select which
element of the array they would like to use as their example, so they
can test that their per-item tool performs well across variations. To
compute its final output, map also runs a copy of the per-item tool
on each element of the input array, though most of these executions
are invisible. (This is a good example of why it is important that

Figure 9: A toy example, showing notebook inside of map in-
side of notebook. map has been given the array [0,1,2,3,4]
as input. Its inner notebook squares an item of an array and
then adds 10, in two separate cells. The user has selected
index 2 in the map tool as the example they would like to
display in the inner notebook.

Figure 10: The image quilt application, displayed in Graft
Garden’s “view” mode. The images shown are a result of the
user typing “cat” into the search box.

tools can run without their interfaces being rendered.) Figure 9
shows a notebook embedded inside of map, so that multiple stages
in the per-item tool can be examined live as they are programmed.

To see map used in a real-world context, let’s look at an “image
quilt” generator made with Engraft (Figure 10). Starting with a
user-supplied query, like “abstract” or “cat”, this web application
displays a dense array of annotated artworks.

The Engraft program behind this application starts by querying
the Art Institute of Chicago API for matching works of art. This
returns an array of objects representing works of art. To make the
quilt, we need to turn each element of this array into a composite
of image and text. We can do this with map (Figure 11).



Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 11: An excerpt of the program used to generate the
image quilt. A map tool takes in an array of data returned
by the Art Institute of Chicago API. A notebook embedded
inside the map processes each element of this array. In three
cells, it 1. constructs an image URL, 2. loads this URL into
ean image element, to check that it is constructed correctly,
and 3. builds a composite, layering text on top of the image
element with appropriate styling.

By splitting the per-item process into multiple steps in the note-
book, we receive immediate feedback about each step. Is the URL
of the image being generated correctly? How does the composite
look with its current styling? (One can certainly imagine this com-
position step being replaced someday with a direct-manipulation
tool!) Once the array of HTML elements is returned by map, it can
finally be composed into the quilt.

Programming is full of nested abstractions, so mapping an ar-
ray is only one example of where it can be valuable to nest en-
vironments. As a very different example, consider programming
a physics simulation. We are inspired here by the Bootstrap cur-
riculum, which uses programming to teach algebra, physics, and
computation to students in grades 5-12 [3]. We adopt a functional
structure for our simulations similar to Bootstrap’s “reactor” [37],
where a simulation is defined by a state initialized to a certain value,
an on-tick function which updates the state on each time step, and
a to-draw function which visualizes the state.

A tool called simulation lets a user define each of these pieces in
slots. It can be useful to insert a live environment into one of these

Figure 12: A simulation tool, loaded with code that describes
how a ball bounces around a rectangular region. In this view,
the tool’s user has provided 1. on-tick: a slot (notebook, here)
describing how the state should be updated on each tick of
time, and 2. to-draw: a slot describing how the state should
be rendered. The user has scrubbed the step slider to step 8,
at which point the ball is bouncing off the rectangle’s right-
hand side.

slots – say, to break down on-tick into steps. Here, a notebook in
the on-tick slot of a simulation describes a bouncing ball behavior
(Figure 12).

By dragging the “tick” slider, the user can see the on-tick and
to-draw behaviors in the context of that particular tick. Here, for
instance, we see that the “bounce x?” cell in the notebook has evalu-
ated to true, so the ball’s x velocity will be inverted in the next step,
as it bounces off the right-hand side of the box. Scrubbing through
the ticks with the slider, the user can check that the pieces of their
computation do what they expect, even as conditions change.

simulation benefits from embedding smaller components within
it, like notebook. It also benefits from being embedded within larger
components. In the example above, simulation is in fact embedded
in a larger notebook (not shown). This larger notebook provides
the shared variables “width” and “height” that the simulation’s dif-
ferent slots refer to. The simulation tool also provides output of its
own back to the notebook: a trace of all the states the simulation
passes through. This trace can be used, live, in other cells to ana-
lyze the output of the simulation. Here, we feed it into voyager, a
tool that embeds the Voyager 2 [54] visual data exploration sys-
tem. Using Voyager 2’s interface, the user plots the x position over
time (Figure 13). This visualization gives us an instantly-responsive
higher-level vantage point on the behavior of the simulation. We



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

Figure 13: A voyager tool in the same notebook as the simulation.
It has been provided with the simulation’s output as its input,
and the user has dragged fields onto the encoding shelves to
plot “x” against “tick”, with “vx” shown as a color.

do not expect that Voyager 2’s creators anticipated this mode of
use. Composability allows unanticipated uses to flourish.

There is nothing special about the example situations described
above. Nested structures are pervasive in programming. To provide
the benefits of liveness & richness across these nested structures,
live environments must be similarly composable.

4.3 Tools and Environments In the Outside
World

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

Figure 13: A voyager tool in the same notebook as the simulation.
It has been provided with the simulation’s output as its input,
and the user has dragged fields onto the encoding shelves to
plot “x” against “tick”, with “vx” shown as a color.

time (Figure ??). This visualization gives us an instantly-responsive
higher-level vantage point on the behavior of the simulation. We
do not expect that Voyager 2’s creators anticipated this mode of
use. Composability allows unanticipated uses to flourish.

There is nothing special about the example situations described
above. Nested structures are pervasive in programming. To provide
the benefits of liveness & richness across these nested structures,
live environments must be similarly composable.

4.3 Tools and Environments In the Outside
World

Given an Engraft slot, a programmer has access to the entire ecosys-
tem of interoperable Engraft components. The question remains of
how they get to that slot in the first place, and how the program in
the slot gets things done in the larger world. Here, we discuss how
the Engraft architecture makes it possible to use live & rich tools
in contexts across the computational landscape, from codebases to
the UNIX shell to applications.

4.3.1 Codebases. So far, we have presented Engraft in the context
of Graft Garden, a simple web application that hosts Engraft tools
and lets users create custom web applications. While Graft Garden
is easy to access and use, it naturally has a limited range of useful-
ness. We do not expect developers of complex web applications to
abandon their preferred frameworks, throw out their codebases,
and switch to Graft Garden (or any other imagined Engraft host, for
that matter). However, we still believe that programmers working
in codebases could benefit from the judicious use of live tools and
environments, if this didn’t require switching entirely into a new,
all-encompassing platform. Fortunately, we have found that the
structure of the Engraft ecosystem offers opportunities for integra-
tion with present programming practices. With these integrations,
programmers can take advantage of what Engraft has to offer in an
unobtrusive and gradual fashion.

As an example of this, we have built an integration called useEngraft
which allows a live tool to be embedded into a React codebase. At

development time, useEngraft presents the Engraft user interface
running alongside a live version of the web application being devel-
oped (Figure ??A). Data is fed, live, from the web application being
developed into the Engraft user interface. The results are fed, live,
back to the web application. When the developer is done working
with the tool, they can save its program back to a JSON file in the
codebase and disable the tool from being displayed (Figure ??B).
In production, the “computational behavior” of the tool is used
without any visual presentation – a user of the web application
would not know Engraft was used to make it.

This is only one example of how Engraft could be embedded
into existing codebases. Different situations will call for embed-
dings that work in different ways. For instance, someone writing
server software may want to define a request handler with Engraft.
Because the server runs imperatively, performing side effects and re-
turning a single response to the client, it can not use useEngraft’s
fully-reactive approach where the program re-runs as the user edits
the function in Engraft. However, a “programming with examples”
approach [? ] could be employed, where the user gathers a number
of input values for their function before iterating on their function’s
implementation, testing it on examples as they go.

While using an embedding like useEngraft is straightforward,
building new embeddings of Engraft into new development con-
texts is not a trivial task. Embeddings must bridge gaps between
a variety of programming paradigms and Engraft’s own reactive
model. The experience of using an embedding must also be care-
fully designed, as it is competing against refined and entrenched
text-only workflows. However, we have found that the simple, func-
tional structure of the Engraft API has made it adaptable to diverse
embeddings.

4.3.2 UNIX Shell. The UNIX shell environment is a powerful and
ecologically important programming system. As Jakubovic et al. [? ]
observe, the shell’s power comes from composability: commands are
often built up by piping data from process to process.While the com-
posability of Unix tools is celebrated, the interfaces of command-
line tools themselves receive less enthusiasm. Data-transformation
commands like sort, sed, and tr are controlled by idiosyncratic
languages of arguments which the user must navigate without
guidance or immediate feedback.

Engraft can fit naturally into the UNIX shell’s architecture, bring-
ing liveness, data-visibility, and rich tools into everyday shell use.
To explore this, we built a command-line tool which embeds En-
graft into UNIX’s network of processes, receiving and sending data
over pipes.

Suppose a researcher wants to find large documents in their
Zotero collection so they can move them to an external drive. In
their shell, they navigate to the location of their collection. They
then run:
find . -printf "'%P',%s\n" | engraft script.json --edit

The first part of this pipeline uses the UNIX find command to
recursively search the current directory, printing the path and size
of each file in a CSV-compatible format. The second part pipes the
output of find into the Engraft command-line utility.

When this command runs, it guides the user to a URL served at
localhost and waits for the researcher to continue their scripting
with Engraft. Visiting the URL in their browser, the researcher finds

Given an Engraft slot, a programmer has access to the entire ecosys-
tem of interoperable Engraft components. The question remains of
how they get to that slot in the first place, and how the program in
the slot gets things done in the larger world. Here, we discuss how
the Engraft architecture makes it possible to use live & rich tools
in contexts across the computational landscape, from codebases to
the UNIX shell to applications.

4.3.1 Codebases. So far, we have presented Engraft in the context
of Graft Garden, a simple web application that hosts Engraft tools
and lets users create custom web applications. While Graft Garden
is easy to access and use, it naturally has a limited range of useful-
ness. We do not expect developers of complex web applications to
abandon their preferred frameworks, throw out their codebases,
and switch to Graft Garden (or any other imagined Engraft host, for
that matter). However, we still believe that programmers working
in codebases could benefit from the judicious use of live tools and
environments, if this didn’t require switching entirely into a new,
all-encompassing platform. Fortunately, we have found that the
structure of the Engraft ecosystem offers opportunities for integra-
tion with present programming practices. With these integrations,
programmers can take advantage of what Engraft has to offer in an
unobtrusive and gradual fashion.

As an example of this, we have built an integration called
useEngraft which allows a live tool to be embedded into a React
codebase. At development time, useEngraft presents the Engraft

user interface running alongside a live version of the web appli-
cation being developed (Figure 14A). Data is fed, live, from the
web application being developed into the Engraft user interface.
The results are fed, live, back to the web application. When the
developer is done working with the tool, they can save its program
back to a JSON file in the codebase and disable the tool from being
displayed (Figure 14B). In production, the “computational behavior”
of the tool is used without any visual presentation – a user of the
web application would not know Engraft was used to make it.

This is only one example of how Engraft could be embedded
into existing codebases. Different situations will call for embed-
dings that work in different ways. For instance, someone writing
server software may want to define a request handler with Engraft.
Because the server runs imperatively, performing side effects and re-
turning a single response to the client, it can not use useEngraft’s
fully-reactive approach where the program re-runs as the user edits
the function in Engraft. However, a “programming with examples”
approach [27] could be employed, where the user gathers a number
of input values for their function before iterating on their function’s
implementation, testing it on examples as they go.

While using an embedding like useEngraft is straightforward,
building new embeddings of Engraft into new development con-
texts is not a trivial task. Embeddings must bridge gaps between
a variety of programming paradigms and Engraft’s own reactive
model. The experience of using an embedding must also be care-
fully designed, as it is competing against refined and entrenched
text-only workflows. However, we have found that the simple, func-
tional structure of the Engraft API has made it adaptable to diverse
embeddings.

4.3.2 UNIX Shell. The UNIX shell environment is a powerful
and ecologically important programming system. As Jakubovic
et al. [15] observe, the shell’s power comes from composability:
commands are often built up by piping data from process to process.
While the composability of Unix tools is celebrated, the interfaces
of command-line tools themselves receive less enthusiasm. Data-
transformation commands like sort, sed, and tr are controlled by
idiosyncratic languages of arguments which the user must navigate
without guidance or immediate feedback.

Engraft can fit naturally into the UNIX shell’s architecture, bring-
ing liveness, data-visibility, and rich tools into everyday shell use.
To explore this, we built a command-line tool which embeds En-
graft into UNIX’s network of processes, receiving and sending data
over pipes.

Suppose a researcher wants to find large documents in their
Zotero collection so they can move them to an external drive. In
their shell, they navigate to the location of their collection. They
then run:

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

Figure 13: A voyager tool in the same notebook as the simulation.
It has been provided with the simulation’s output as its input,
and the user has dragged fields onto the encoding shelves to
plot “x” against “tick”, with “vx” shown as a color.

time (Figure ??). This visualization gives us an instantly-responsive
higher-level vantage point on the behavior of the simulation. We
do not expect that Voyager 2’s creators anticipated this mode of
use. Composability allows unanticipated uses to flourish.

There is nothing special about the example situations described
above. Nested structures are pervasive in programming. To provide
the benefits of liveness & richness across these nested structures,
live environments must be similarly composable.

4.3 Tools and Environments In the Outside
World

Given an Engraft slot, a programmer has access to the entire ecosys-
tem of interoperable Engraft components. The question remains of
how they get to that slot in the first place, and how the program in
the slot gets things done in the larger world. Here, we discuss how
the Engraft architecture makes it possible to use live & rich tools
in contexts across the computational landscape, from codebases to
the UNIX shell to applications.

4.3.1 Codebases. So far, we have presented Engraft in the context
of Graft Garden, a simple web application that hosts Engraft tools
and lets users create custom web applications. While Graft Garden
is easy to access and use, it naturally has a limited range of useful-
ness. We do not expect developers of complex web applications to
abandon their preferred frameworks, throw out their codebases,
and switch to Graft Garden (or any other imagined Engraft host, for
that matter). However, we still believe that programmers working
in codebases could benefit from the judicious use of live tools and
environments, if this didn’t require switching entirely into a new,
all-encompassing platform. Fortunately, we have found that the
structure of the Engraft ecosystem offers opportunities for integra-
tion with present programming practices. With these integrations,
programmers can take advantage of what Engraft has to offer in an
unobtrusive and gradual fashion.

As an example of this, we have built an integration called useEngraft
which allows a live tool to be embedded into a React codebase. At

development time, useEngraft presents the Engraft user interface
running alongside a live version of the web application being devel-
oped (Figure ??A). Data is fed, live, from the web application being
developed into the Engraft user interface. The results are fed, live,
back to the web application. When the developer is done working
with the tool, they can save its program back to a JSON file in the
codebase and disable the tool from being displayed (Figure ??B).
In production, the “computational behavior” of the tool is used
without any visual presentation – a user of the web application
would not know Engraft was used to make it.

This is only one example of how Engraft could be embedded
into existing codebases. Different situations will call for embed-
dings that work in different ways. For instance, someone writing
server software may want to define a request handler with Engraft.
Because the server runs imperatively, performing side effects and re-
turning a single response to the client, it can not use useEngraft’s
fully-reactive approach where the program re-runs as the user edits
the function in Engraft. However, a “programming with examples”
approach [? ] could be employed, where the user gathers a number
of input values for their function before iterating on their function’s
implementation, testing it on examples as they go.

While using an embedding like useEngraft is straightforward,
building new embeddings of Engraft into new development con-
texts is not a trivial task. Embeddings must bridge gaps between
a variety of programming paradigms and Engraft’s own reactive
model. The experience of using an embedding must also be care-
fully designed, as it is competing against refined and entrenched
text-only workflows. However, we have found that the simple, func-
tional structure of the Engraft API has made it adaptable to diverse
embeddings.

4.3.2 UNIX Shell. The UNIX shell environment is a powerful and
ecologically important programming system. As Jakubovic et al. [? ]
observe, the shell’s power comes from composability: commands are
often built up by piping data from process to process.While the com-
posability of Unix tools is celebrated, the interfaces of command-
line tools themselves receive less enthusiasm. Data-transformation
commands like sort, sed, and tr are controlled by idiosyncratic
languages of arguments which the user must navigate without
guidance or immediate feedback.

Engraft can fit naturally into the UNIX shell’s architecture, bring-
ing liveness, data-visibility, and rich tools into everyday shell use.
To explore this, we built a command-line tool which embeds En-
graft into UNIX’s network of processes, receiving and sending data
over pipes.

Suppose a researcher wants to find large documents in their
Zotero collection so they can move them to an external drive. In
their shell, they navigate to the location of their collection. They
then run:
find . -printf "'%P',%s\n" | engraft script.json --edit

The first part of this pipeline uses the UNIX find command to
recursively search the current directory, printing the path and size
of each file in a CSV-compatible format. The second part pipes the
output of find into the Engraft command-line utility.

When this command runs, it guides the user to a URL served at
localhost and waits for the researcher to continue their scripting
with Engraft. Visiting the URL in their browser, the researcher finds

The first part of this pipeline uses the UNIX find command to
recursively search the current directory, printing the path and size
of each file in a CSV-compatible format. The second part pipes the
output of find into the Engraft command-line utility.

When this command runs, it guides the user to a URL served at
localhost and waits for the researcher to continue their scripting
with Engraft. Visiting the URL in their browser, the researcher finds
an Engraft notebook loaded with the data produced by find and



Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 14: A conventional web application, Synonymizer,
developed with useEngraft. (A) When useEngraft is called
with edit: true, the live tool is displayed in the browser, to
the right of the running application. The Engraft tool extractor
is used in this side pane to transform an API response passed
from the conventional code into the tool into a set of words
that can be displayed on screen. The running app shows
the live output from the tool. (B) Once edit is changed to
false, the browser no longer shows the Engraft interface.
The Engraft program runs invisibly, and the application is
ready to be deployed publicly.

Figure 15: The editing interface launched by the Engraft
command-line tool. (A) is the view first seen by the user –
raw string input displayed in a notebook. (B) is the view after
the user edits the data in the data-table tool.

piped into engraft, as shown in Figure 15A. They parse the CSV
in one cell. In another, they load the parsed data into data-table, a
general-purpose tool for viewing and editing tabular data inspired
by Observable’s data table cell [30]. In this tool, the researcher adds
filters to select the files they are looking for and disables the column
of sizes so that only the file paths will be output back to the shell.
Their final Engraft script is shown in Figure 15B.

When they press the “Save script and return to stdout” button,
their script is saved to script.json, which they specified in their
original command. At their shell, they will see a list of paths re-
turned back from Engraft. It looks good, so they run:

Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 14: A conventional web application, Synonymizer,
developed with useEngraft. (A) When useEngraft is called
with edit: true, the live tool is displayed in the browser, to
the right of the running application. The Engraft tool extractor
is used in this side pane to transform an API response passed
from the conventional code into the tool into a set of words
that can be displayed on screen. The running app shows
the live output from the tool. (B) Once edit is changed to
false, the browser no longer shows the Engraft interface.
The Engraft program runs invisibly, and the application is
ready to be deployed publicly.

Figure 15: The editing interface launched by the Engraft
command-line tool. (A) is the view first seen by the user –
raw string input displayed in a notebook. (B) is the view after
the user edits the data in the data-table tool.

an Engraft notebook loaded with the data produced by find and
piped into engraft, as shown in Figure ??A. They parse the CSV
in one cell. In another, they load the parsed data into data-table, a
general-purpose tool for viewing and editing tabular data inspired
by Observable’s data table cell [? ]. In this tool, the researcher adds
filters to select the files they are looking for and disables the column
of sizes so that only the file paths will be output back to the shell.
Their final Engraft script is shown in Figure ??B.

When they press the “Save script and return to stdout” button,
their script is saved to script.json, which they specified in their
original command. At their shell, they will see a list of paths re-
turned back from Engraft. It looks good, so they run:

find . -printf '"%P",%s\n' | engraft script.json
| xargs -d\\n -I % mv "%" /external-drive

Here, the –edit flag is removed from the call to engraft. This
means that, rather than launching a web interface, engraft runs
the script it is passed in automatically (“headlessly”). The filtered

Here, the –edit flag is removed from the call to engraft. This
means that, rather than launching a web interface, engraft runs
the script it is passed in automatically (“headlessly”). The filtered
list of files it outputs is piped onwards to another UNIX tool that
moves the files to the external drive.



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

Figure 16: A mockup of an imagined embedding of Engraft
into Cuttle. The Engraft program defines a modifier in Cut-
tle which transforms an input heart shape into an array of
rotated hearts.

It is unusual to see the same interactive tools used across contexts
as varied as computational notebooks, web application develop-
ment, and command-line scripts – though traditional programming
languages often cross these boundaries. Engraft aims to level the
playing field between interactive tools and static text, bringing the
benefits of broad applicability to live & rich tools.

4.3.3 Applications. We are also interested in ways interactive end-
user applications can host Engraft tools. We have already seen one
example: Graft Garden is a simple web-application which hosts En-
graft tools and makes their output available as web pages. But Graft
Garden is just one instance of an application host. By providing an
Engraft slot, any application built on the web platform can tap into
the Engraft ecosystem.

For instance, Cuttle [5], a vector editor for digital fabrication,
currently has the ability to implement components and modifiers
with bits of JavaScript code. If Cuttle’s code box were replaced with
an Engraft slot, the world of Engraft programming tools would be
available, in-place, to Cuttle users. (Figure 16)

One can imagine applications farther from the world of program-
ming using Engraft to provide open-ended extensions of their own
interfaces. An animation application’s easing-function editor and
color picker could be implemented as Engraft slots prepared with
default tools. Experienced users could then choose to remove these
defaults and replace them with their own tools. In this way, Engraft
could enable end-user customization, blurring the lines between
application user and developer.

5 IMPLEMENTATION
We now present implementation details of the Engraft prototype.
We begin with a slightly idealized description of the Engraft API,
before explaining an important deviation from this ideal, then go
on to discuss the Engraft component ecosystem.

5.1 The Engraft API
The core of an Engraft component is a function called run. As we
discuss further in §5.2, performant interactivity requires augment-
ing this function with a system for incremental evaluation, but for
the remainder of this section we will put this complication aside
and focus on the pure semantics of this function.

A component’s run function takes in two “props” as input:
• program: The component’s program, a serializable JavaScript
object that defines its behavior.

• varBindings: Bindings of variable ids & names to promised
values.

In return, the component synchronously returns two “results”:
• outputP: A promise of a value.
• view: A representation of how to render the component.

This short description captures the basic structure of the Engraft
API. We discuss important details in the following subsections. For
the definitive details, please refer to@engraft/core in the Engraft
source repository [52], which provides TypeScript types for the
Engraft API.

5.1.1 Views. The view returned by run gives the component’s host
everything it needs to display an interactive interface for the com-
ponent. The most important part of the view is a function called
render which, when given a few important parameters, returns
a React node for the component’s view.9 The most important pa-
rameter render receives is updateProgram, a function which can
be called to transform the component’s program according to an
updater function. As a user interacts with a rendered view, their in-
teractions will produce calls to updateProgram, which will change
an underlying program, triggering a re-run of the component’s run
function and producing a new view. This is the model-view loop of
interactive program editing in Engraft.

5.1.2 Asynchronicity. Engraft components can produce output val-
ues synchronously or asynchronously. For instance, components
which make network calls or perform expensive computations will
only be able to produce output asynchronously. We use promises to
represent values that may not be synchronously available. However,
built-in JavaScript promises are necessarily asynchronous, meaning
that even if they are resolved synchronously, this value will not be
available to the promise’s users until a future tick. To support both
synchronous and asynchronous output, we adapt an alternative
promise library called synchronous-promise [25] for promises
in the Engraft ecosystem.10 Because a component’s output can be
asynchronous, and may feed into another component, we also allow
the varBindings coming into a component to include promised
values. This supports fine-grained handling of asynchronicity by
components: a component can start a computation on one input
even while another is pending.

9Using React to implement views is an expedient compromise of Engraft’s general
design approach of remaining unopinionated about component implementation. How-
ever, as adapters are available between React and many other frameworks, this does
not reduce flexibility of implementation as much as it may seem.
10This is almost equivalent to an alternative standard in which a component produces
either a value or a promise. “Synchronous promises” have two advantages over this
alternative: 1. they can represent both returned values and thrown errors, and 2. they
present a more uniform API to consumers.



Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

While output values can be deferred, a component’s resulting
view is always returned immediately. Even if a component takes
time to run, it must provide an interface to show the user while
it is running. This view can listen to promises involved in the
component’s computation to update its display while computation
progresses.

5.1.3 Error Handling. While output values are wrapped in
promises primarily to support asynchronous components, promises
also conveniently provide support for error handling. If a compo-
nent throws an error during computation of its output, this error
will be held by its output promise. It can then be displayed in an
Engraft component’s UI, providing helpful feedback to the program-
mer rather than crashing the system.

5.1.4 Additional Parts of a Component. While the majority of a
component’s definition resides in its run function, a few other bits
of information are required from a component. The first is a func-
tion called makeProgram, which is used to initialize a program for
a new instance of the component. To support the common pat-
tern of a component having a “main input” which an environment
may want to pre-populate, makeProgram optionally accepts a string
defaultInputCode. This allows ergonomic interactions, such as
new cells in a notebook automatically taking in the previous cell as
input. The second is a function called computeReferences, which
takes in one of the component’s programs and returns the set of
“free” variables referred to by the program (that is, the variables the
component wants its host to pass in as varBindings). Components
which manage data-flow between their children, such as notebook,
use computeReferences to construct a dependency graph.

These pieces, together with run, are bundled by a compo-
nent’s developer into a single JavaScript object (TypeScript type
Component) which is exported by a module for use.

5.2 Incremental Computation in Engraft
The architecture described in the last section provides a simple
functional API for Engraft: a component’s output and view are pure
functions of its program and inputs. However, implemented directly,
this scheme would entail unacceptable computational costs. As an
illustration: Every time a cell is added to a notebook, or a key is
pressed in a code editor inside a notebook, the notebook’s underly-
ing program changes. This means we must re-run the notebook’s
run function on the new program. If each such run started from
scratch, each would have to recompute all the cells in the notebook,
even those manifestly unaffected by the change that prompted it.

This is clearly not a scalable approach. What we need is a way
for each run of the notebook (or any other component) to build
intelligently on previous runs, re-using old work when possible
rather than running everything from scratch. This feature is known
as incremental computation [38].11 Engraft’s situation, in which a
tree of components must be incrementally maintained as changes
occur, is reminiscent of React [26], a library for building user in-
terfaces. Inspired by the way React performantly maintains its
functionally-defined tree of components, we have built a novel
library for incremental computation named Refunc.

11Incremental computation is closely related to reactive and dataflow programming
[2].

Refunc is a general library for functional incremental compu-
tation, used by Engraft but not otherwise tied to it. The external
API of Refunc is minimalist, consisting solely of the concept of
a refunction: a function that is pure except that it can read and
write to a “memory” provided to it as an extra argument. Using this
memory, the function can store information on intermediate results
between runs. What is stored in the memory, and how it is accessed
by the refunction, is up to the refunction’s implementation.

In Engraft, a component’s run function is implemented as a
refunction rather than a bare JavaScript function. Components
can use their memories to memoize their entire computation, to
memoize costly sub-computations (like compiling textual code to a
JavaScript function), and, recursively, to memoize the memories of
sub-components they embed in slots.

What actually happens when a notebook is edited in Engraft?
When a cell is added, the notebook’s program changes. But the
notebook has stored the memories of all its cells’ computations in
its own memory. It can immediately detect that these cells haven’t
changed between the new and old programs12 and re-use their old
values and views. By using Refunc, Engraft can expose a simple
functional model while still maintaining the performance necessary
for live program editing.

5.2.1 Hooks. Refunc is exposed as part of the Engraft API, so, in
keepingwith our general design principles, we have kept the Refunc
API minimal and unopinionated. However, in practice component-
makers will not want to directly manage memories in an ad-hoc
way, andwill insteadwant to use principledmemoization primitives.
Inspired by React’s “hooks” system, we have implemented an anal-
ogous, optional, system for Refunc. Our hooks system provides a
convenient way to write functions that use memoization primitives
without having to explicitly manage a refunction’s memory.

To support the use-cases we ran into developing Engraft com-
ponents, we extended Refunc’s hooks system beyond React’s in
several ways, including supporting keyed groups of hooks and al-
lowing hooks to run asynchronously. With these extensions, we
have been able to express sophisticated incremental computation
patterns. For more on Refunc, we refer you to the README in the
@engraft/refunc package in the Engraft source repository [52].

5.3 Slots and the Component Tree
Throughout this paper, we have shown Engraft programmers using
“slots” to compose nested programs. The slot component is the glue
that holds together Engraft programs. It is a built-in component
that appears at first as a code editor. Arbitrary JavaScript can be
entered into this code editor, where it is compiled, evaluated, and
returned as output. References to Engraft variables can be inserted
into this editor using an auto-complete window. If a component’s
name is selected via auto-complete, the slot will be replaced with
the component, entering “host mode” (Figure 17).

When slot renders a hosted component, it provides it with a
“component frame” to identify it. On hover, the title bar of this
frame also reveals a few buttons (Figure 17): “cp”, which copies the
component’s program to the clipboard so it can be pasted into a

12When Engraft programs are edited, “structural sharing” is employed to re-use un-
changed portions of the program. This means that detecting that a cell hasn’t changed
can be done with a constant-time reference-equality check.



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

Figure 17: A simple toy-adder component. Its “y” slot is pro-
vided with (a) a code snippet, (b) a reference to a variable
provided by the toy-adder’s host, (c) a nested notebook. In (c),
the toy-adder’s title bar is hovered, revealing three circular
buttons.

Figure 18: An arrangement of an toy-adder nested in an toy-
adder nested in a notebook, together with a diagram of the tree
of components resulting from this arrangement. Note the
slot components, which provide the code-editors shown as
leaves of the tree, as well as invisible intermediates between
components and their sub-components.

different location, “i”, which displays a pop-up debugger window
helpful for component development, and “x”, which removes the
hosted component and brings the slot back into code mode. We
anticipate this frame will support additional general-purpose in-
teractions in the future, such as “maximizing” a component for
focused work or “pinning” it to a sidebar.

Through the use of slots, a “tree of components” is formed during
the use of Engraft. Figure 18 shows an example arrangement of
components together with a diagram of the resulting tree. Note,
however, that there is no explicit reference to a tree of components
anywhere in the Engraft API. Rather, this tree emerges from the
fact that a component, like any other software system, is free to act
as a host that embeds other components.

slot plays an essential role in the Engraft user experience. While
the Engraft API provides the computational structures needed for

open-ended composition, slot provides users with an interface that
makes that composition accessible in practice.

5.4 Component Creation and Distribution
An Engraft component is implemented as a JavaScript object ad-
hering to a certain interface, as described in §5.1. This technical
description raises some important questions.

5.4.1 How are components made? The Engraft API is low-level.
Building a component directly with this API gives a developer full
control of all aspects of component-host communication, including
details such as asynchronicity and incremental computation. How-
ever, attending to these details can be complex, even for simple
components which do not use these features in distinctive ways.

We believe the best way to deal with this problem is to build
higher-level layers on top of the Engraft API while maintaining the
underlying API for those who need its full power. To experiment
with this approach, we made defineSimpleComponent, a function
which lets programmers implement components at a higher level
than the Engraft API, provided their components satisfy certain
simplifying assumptions. A simple toy-adder component that adds
the contents of its two slots, which takes 60 lines of code to im-
plement directly, can be made with defineSimpleComponent in 25
lines.

So far, Engraft components have been made with conventional
textual code, whether low- or high-level. The question naturally
arises as to how Engraft components could be made in a live, rich
environment, perhaps within Engraft itself. For instance, a user
could build a composite of Engraft components (e.g., a Wikipedia-
specific API tool built in a computational notebook) and then select
parts of this composite to expose in a custom tool interface. Or
a user could take an existing web-based tool, and then describe
how it could be embedded into an iframe and driven to make it
participate in the Engraft API. Meta-tools like these could make
tool creation part of the process of tool use, empowering end-users
and end-user communities [28].

5.4.2 How are components accessed by Engraft users? In our work
on Engraft so far, we largely side-step this question. All components
are either bundled together with the Engraft system, or injected by
a specific host for use within that host. This is a stop-gap solution.
Ultimately, it will be important for third-party component creators
to be able to post components publicly and for users to be able to
access them easily from any host. One convenient approach would
be to leverage existing package managers like NPM.

5.5 Components Built So Far
To date, we have implemented twenty-five components with En-
graft. The examples in §4 highlight some of these: notebook, request,
extractor, formatter, notebook-canvas, map, simulation, voyager, and
data-table. Appendix A includes pictures and brief descriptions
of 10 more components. All of these components are “sketches”
intended to test the Engraft API’s design and demonstrate its com-
binatorial possibilities. We expect that as Engraft finds use with
more communities, tool-makers will contribute both more polished
and more radically divergent components back into the Engraft
ecosystem.



Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

6 HEURISTIC ANALYSIS
While the examples in §4 demonstrate how Engraft enables promis-
ing new workflows, more systematic evaluation is necessary to
characterize the limits of Engraft’s approach. Towards that end,
this section analyzes Engraft according to the “Technical Dimen-
sions of Programming Systems” (TDPS) taxonomy introduced by
Jakubovic et al. [15].We focus on dimensions which reveal strengths
and weaknesses of Engraft’s design, as well as those which suggest
comparisons to existing systems (complementing our discussion in
§2). Dimensions from TDPS are printed in bold.

Feedback Loops (TDPS §4.1.1) asks how a system minimizes
the gulfs of evaluation and execution. These gulfs correspond to
two of Engraft’s motivating qualities: liveness narrows the gulf
of evaluation with immediate feedback (TDPS §4.1.2) while rich-
ness narrows the gulf of execution with direct manipulation (TDPS
§4.1.3). Modes of Interaction (TDPS §4.1.4) further asks how the
system stages access to different forms of interaction at different
times. Like the example of Jupyter notebooks provided by TDPS,
interactions with Engraft itself are un-staged – there are not sepa-
rate editing and debugging modes, but rather a single live mode.
Embedding Engraft into another system may necessitate moving
between different modes, such as moving between editing a shell
script that calls an Engraft program and editing the Engraft pro-
gram itself. The usability of an embedding depends critically on
how it supports movements between modes like this.

Notational Structure (TDPS §4.2.1): Like Boxer [7], Engraft
uses “complementing notations” (TDPS §4.2.3). While Boxer uses
two forms of notation (code and boxes), Engraft has an extensible
notational system whereby new components can introduce arbi-
trary new notations. This extensibility enables highly customized
programming experiences not possible within Boxer (e.g. format-
ter and voyager), but also makes Engraft’s notation less uniform
(see Uniformity of Notations, TDPS §4.2.10). This heterogeneity
comes with risks: it might be challenging for users to learn new
components, or uncomfortable for users to work in a space that
ties together discordant interfaces. Furthermore, because every En-
graft component defines its own program specification, Engraft
does not easily support “overlapping notations”: parallel represen-
tations for the same program (TDPS §4.2.2). This contrasts with
Sketch-n-Sketch’s “bidirectional” approach [12], in which direct-
manipulation interfaces edit general-purpose code so multiple in-
terfaces can edit the same underlying program.

Composability (TDPS §4.3.4) asks how primitives can “be com-
bined to achieve novel behaviors.” This question, applied to live &
rich tools, is the impetus behind Engraft. Engraft composes live &
rich tools within live environments, and goes further than systems
supporting only “flat” composition (e.g., mage [18]) by support-
ing “nested” composition (see our §4.2). However, the composition
provided by Engraft is limited in some ways. For instance, it is
natural to want to “unbundle” the three panes of Gneiss [4] as
three separate Engraft components, as we alluded to in our §2.2.
However, cyclic data flows exist between these panes which cannot
be precisely recreated in Engraft’s functional-programming model.
Furthermore, Gneiss uses bespoke drag-and-drop interactions be-
tween panes, while Engraft components’ UIs cannot interact with
one another.

Self-Sustainability (TDPS §4.4.3) is the ability to modify a pro-
gramming system from within itself, in contrast to the typical sepa-
ration of “user level” and “implementation level”. Engraft does not
prioritize self-sustainability. At present, Engraft components are
created andmodified outside of Engraft with a traditional JavaScript
software-engineering process. This stands in contrast to systems
like Smalltalk [11] and Webstrates [19] which host their own devel-
opment environments. These approaches may be complementary;
embedding Engraft into Webstrates is a possible future direction.
Alternatively, meta-tools could bring component-building into En-
graft itself, as discussed in our §5.4.1.

Learnability of Engraft (TDPS §4.7.1) is as-yet untested. Certain
aspects of Engraft might contribute to learnability: Live feedback
lets users try things out and learn from immediate responses. Rich
components let users use familiar direct-manipulation interactions
to build programs, rather than abstract syntax. The uniform be-
havior of slots offers a conceptually simple model for composition.
Other aspects might detract: It may be burdensome to learn a large
variety of tools, or it may be hard to discover the right component
to use when a task is first encountered. Engraft’s approach to Socia-
bility (TDPS §4.7.2) is centered around its integration with existing
technology stacks, allowing “incremental adoption”. This occurs in
two ways: embedding existing systems into Engraft (as seen with
voyager in our §4.2) and embedding Engraft into existing systems
(as seen in several ways in our §4.3). However, Engraft’s departures
from conventional programming practices like textual code lim-
its its integration with some sociotechnical systems. For instance,
while an Engraft program can be written to a text file and checked
into a version control system like git, programmers would need
to work directly with unfamiliar JSON representations in order to
resolve merge conflicts. Recent work has sought to extend version
control to non-textual coding interfaces [9], but this is still an area
of active research.

We have found this analysis helpful for validating Engraft’s
strengths, identifying its possible weaknesses, and mapping out
its position in the broader space of programming systems. We
are especially excited by future directions the analysis suggests,
such as extending Engraft’s UI model to support richer interactions
between components and embedding Engraft into self-sustaining
platforms where tool development can be closer to tool use.

7 CONCLUSION
Our starting point in this paper is a simple observation: Despite
efforts from industry and academia spanning decades, live & rich
programming tools are not a mainstream part of programming
practice. To our knowledge, this fact has not found much discussion
in the literature.13 We believe that, given the potential benefits live
& rich programming might offer, this gap should be confronted
head-on.

In this work, we take on the necessary challenge of composing
live & rich tools. We further articulate three distinct forms of compo-
sition that must be supported in order for live & rich programming

13Tanimoto’s 2013 reflections on live systems [51] includes a section on “Criticisms of
Liveness”, though he quickly dismisses them in favor of a generally optimistic view.
Lau’s short piece [21] on why programming-by-demonstration systems sometimes
fail is insightful, but it focuses on AI-specific aspects and does not apply to live & rich
tools in their full breadth.



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

to rival entrenched textual alternatives: tools in environments, envi-
ronments in environments, and tools and environments in the outside
world. We achieve these forms of composition with Engraft, an API
for the web platform that enables recursive embedding of compo-
nents within hosts. Engraft demonstrates that composition along
these three forms is possible while serving as a foundation for
further explorations.

Engraft is ready for use by other researchers in our commu-
nity. In particular, we hope that Engraft can serve as an enabling
platform for researchers developing experimental live & rich tools.
Novel tools built as Engraft components can more easily provide
value and be validated, as they can be used with all the tools, en-
vironments, and outside-world integrations that already exist in
the Engraft ecosystem The Engraft codebase, with accompanying
documentation, is hosted at https://github.com/engraftdev/engraft
[52]. It contains the libraries necessary for implementing new tools
and hosts, as well as implementations of the tools and hosts dis-
cussed in this paper. We invite researchers interested in building
on Engraft to contact us to discuss possible collaborations.

ACKNOWLEDGMENTS
We thank Ken Gu, Eunice Kim, Geoffrey Litt, Edward Misback,
Josh Pollock, the UW Interactive Data Lab, and the anonymous
reviewers for their valuable feedback. This work was supported by
a Moore Foundation software grant.

REFERENCES
[1] Leif Andersen, Michael Ballantyne, and Matthias Felleisen. 2020. Adding inter-

active visual syntax to textual code. Proceedings of the ACM on Programming
Languages 4 (nov 13 2020), 1–28.

[2] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn
Mostinckx, and Wolfgang de Meuter. 2013. A survey on reactive programming.
Comput. Surveys 45, 4 (8 2013), 1–34.

[3] Bootstrap. 2022. Bootstrap. https://bootstrapworld.org/index.shtml.
[4] Kerry Shih-Ping Chang. 2016. A Spreadsheet Model for Using Web Services and

Creating Data-Driven Applications. Carnegie Mellon University (2016).
[5] Cuttle Labs Inc. 2022. Cuttle - Design tool for digital cutting machines.

https://cuttle.xyz/.
[6] Allen Cypher (Ed.). 1994. Watch what I do: Programming by demonstration. The

MIT Press.
[7] A. A diSessa and H. Abelson. 1986. Boxer: a reconstructible computational

medium. Commun. ACM 29, 9 (9 1986), 859–868.
[8] Jonathan Edwards. 2005. Subtext. In Proceedings of the 20th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applications.
ACM.

[9] Jonathan Edwards and Tomas Petricek. 2021. Typed Image-based Programming
with Structure Editing. Presented at Human Aspects of Types and Reasoning
Assistants (HATRA’21).

[10] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia
Polikarpova. 2020. Small-Step Live Programming by Example. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
ACM.

[11] Adele Goldberg and David Robson. 1983. Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc.

[12] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch. In Pro-
ceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. ACM.

[13] Joshua Horowitz. 2018. PANE: Programming with Visible Data. (2018). Presented
at the Workshop on Live Programming (LIVE) 2018.

[14] Joshua Horowitz and Jeffrey Heer. 2023. Live, Rich, and Composable: Qualities for
Programming Beyond Static Text. (2023). Presented at the 13th annual workshop
on the intersection of HCI and PL (PLATEAU 2023).

[15] Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. 2023. Technical Dimen-
sions of Programming Systems. The Art, Science, and Engineering of Programming
7, 3 (feb 15 2023).

[16] JetBrains s.r.o. 2022. MPS: The Domain-Specific Language Creator by JetBrains.
https://www.jetbrains.com/mps/.

[17] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM.

[18] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. ACM.

[19] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology. ACM.

[20] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E. Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing,
and Jupyter Development Team. 2016. Jupyter Notebooks - a publishing format for
reproducible computational workflows. In International Conference on Electronic
Publishing.

[21] Tessa Lau. 2009. Why Programming-By-Demonstration Systems Fail: Lessons
Learned for Usable AI. https://doi.org/10.1609/aimag.v30i4.2262. AI Mag. 30, 4
(2009), 65–67.

[22] Sorin Lerner. 2020. Projection Boxes: On-the-fly Reconfigurable Visualization for
Live Programming. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems. ACM.

[23] Jens Lincke, Robert Krahn, Dan Ingalls, and Robert Hirschfeld. 2009. Lively Fabrik
A Web-based End-user Programming Environment. In 2009 Seventh International
Conference on Creating, Connecting and Collaborating through Computing. IEEE.

[24] Eyal Lotem and Yair Chuchem. 2022. Lamdu. https://www.lamdu.org/.
[25] Davyd McColl. 2023. synchronous-promise.

https://github.com/fluffynuts/synchronous-promise.
[26] Meta Platforms, Inc. 2022. React – A JavaScript library for building user interfaces.

https://reactjs.org/.
[27] B. A. Myers. 1986. Visual programming, programming by example, and program

visualization: a taxonomy. In Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ’86. ACM Press.

[28] Bonnie A Nardi. 1993. A small matter of programming. MIT Press, London,
England.

[29] Observable Inc. 2022. Observable - Explore, analyze, and explain data. As a team.
https://observablehq.com/.

[30] Observable Inc. 2022. Quickly Explore and Analyze Your
Data With Data Table Cell / Observable / Observable.
https://observablehq.com/@observablehq/introducing-data-table-cell.

[31] Observable Inc. 2023. Sample datasets / Observable / Observable.
https://observablehq.com/@observablehq/sample-datasets.

[32] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. 2021. Filling typed holes with live GUIs. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation. ACM.

[33] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live func-
tional programming with typed holes. Proceedings of the ACM on Programming
Languages 3 (jan 2 2019), 1–32.

[34] Cyrus Omar, Young Seok Yoon, Thomas D. LaToza, and Brad A. Myers. 2012.
Active code completion. In 2012 34th International Conference on Software Engi-
neering (ICSE). IEEE.

[35] Stephen Oney, Brad Myers, and Joel Brandt. 2014. InterState. In Proceedings of
the 27th annual ACM symposium on User interface software and technology. ACM.

[36] Everest Pipkin. 2021. been having some motivation troubles recently (god
who hasn’t) so i’m gonna pick a tiny personal project off my ideas list
and see if i can get it working by morning. tonight - a lil bash script that
emails me the summaries of 5 random wikipedia articles each morning.
https://twitter.com/everestpipkin/status/1349274983651012609.

[37] Joe Politz, Benjamin Lerner, Sorawee Porncharoenwase, and Shriram Krishna-
murthi. 2019. Event Loops as First-Class Values: A Case Study in Pedagogic
Language Design. The Art, Science, and Engineering of Programming 3, 3 (feb 1
2019).

[38] W. Pugh and T. Teitelbaum. 1989. Incremental computation via function caching.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages - POPL ’89. ACM Press.

[39] Pure Data. 2023. PD community site. https://puredata.info/.
[40] David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.

2019. Babylonian-style Programming: Design and Implementation of an Integra-
tion of Live Examples into General-purpose Source Code. The Art, Science, and
Engineering of Programming 3, 3 (feb 1 2019).

[41] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2018. Exploratory and Live, Programming and Coding. The Art, Science, and
Engineering of Programming 3, 1 (jul 23 2018).

[42] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch. Commun. ACM 52, 11 (11 2009),
60–67.

https://github.com/engraftdev/engraft


Engraft: An API for Live, Rich, and Composable Programming UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

[43] Arvind Satyanarayan and Jeffrey Heer. 2014. Lyra: An Interactive Visualization
Design Environment. Computer Graphics Forum 33, 3 (6 2014), 351–360.

[44] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (1 2017), 341–350.

[45] Yoshiki Schmitz. 2019. I’ve been jamming on this concept for making data-driven
designs... https://twitter.com/yoshikischmitz/status/1176642448077967362.

[46] Paul Shen. 2021. Show HN: Natto – a canvas for writing and manipulating
JavaScript. https://news.ycombinator.com/item?id=26478548.

[47] Paul Shen. 2022. welcome! – natto. https://natto.dev/.
[48] Vlad Shilov. 2023. react-colorful. https://omgovich.github.io/react-colorful/.
[49] Frank M. Shipman and Catherine C. Marshall. 1999. Formality Considered

Harmful: Experiences, Emerging Themes, and Directions on the Use of Formal
Representations in Interactive Systems. Computer Supported Cooperative Work
(CSCW) 8, 4 (12 1999), 333–352.

[50] Steven L. Tanimoto. 1990. VIVA: A visual language for image processing. Journal
of Visual Languages and Computing 1, 2 (6 1990), 127–139.

[51] Steven L. Tanimoto. 2013. A Perspective on the Evolution of Live Programming.
In Proceedings of the 1st International Workshop on Live Programming (LIVE ’13).
IEEE Press, San Francisco, California, 31–34.

[52] Engraft team. 2023. Engraft. https://github.com/engraftdev/engraft.
[53] Wikipedia contributors. 2022. Grafting — Wikipedia, The Free Encyclope-

dia. https://en.wikipedia.org/w/index.php?title=Grafting. [Online; accessed
01-September-2022].

[54] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
ACM.

[55] Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. 2016. Object-
Oriented Drawing. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. ACM.



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Joshua Horowitz and Jeffrey Heer

A COMPONENT MENAGERIE

Figure 19: Example uses of ten additional components built for the Engraft platform. In rows: • checkbox: A simple checkbox
control. • npm: Imports JavaScript packages from the npm registry. Here, a confetti package is used to create a celebratory
button. • example-datasets: Pre-bundled copies of eleven datasets adapted from the Observable standard library [31]. Here, the
“olympians” dataset is examined in a data-table. The menu of dataset options is shown inset. • slider: A simple slider control.
Bounds and step size can be modified with a right-click menu (not shown). • function: A tool for defining a function in the
presence of example inputs. Here, function is used to make a name-to-initials function. In a second cell of the notebook, the
user uses the output of function as an ordinary JavaScript function. • simple-chart: A simple chart builder which gives the user
encoding options based on columns in the data. Charts are rendered with Vega-Lite [44]. Here, simple-chart takes in the “cars”
dataset provided by from example-datasets. • synthesizer: A simple example-based program synthesizer, following the example of
Ferdowsifard et al. [10]. • color: A color picker wrapping react-colorful [48]. Here, it is embedded into HTML to style stars. •
gadget-definer / gadget-user: A sketch of a meta-tool allowing new tools to be defined from within Engraft. Here, gadget-definer is
used to define a new tool wrapping the HTML time-input control and gadget-user uses this tool. • file: A tool for uploading a file
and embedding it persistently inside an Engraft program. Here, it is used to embed an image of a cat. A menu of alternative
ways file can interpret uploaded files is shown inset.


	Abstract
	1 Introduction
	2 Background
	2.1 Liveness & Richness
	2.2 Composability of Live & Rich Tools
	2.3 mage and Three Forms of Composition
	2.4 Livelits

	3 The Engraft Architecture
	4 Live Composition with Engraft
	4.1 Tools In Environments assets/section4.1
	4.2 Environments In Environments assets/section4.2
	4.3 Tools and Environments In the Outside World assets/section4.3

	5 Implementation
	5.1 The Engraft API
	5.2 Incremental Computation in Engraft
	5.3 Slots and the Component Tree
	5.4 Component Creation and Distribution
	5.5 Components Built So Far

	6 Heuristic Analysis
	7 Conclusion
	Acknowledgments
	References
	A Component Menagerie

