SCATTERSHOT: Interactive In-context Example Curation
for Text Transformation

Tongshuang Wu*
sherryw@cs.cmu.edu

Carnegie Mellon University
USA

Jeffrey Heer
jheer@cs.uw.edu
University of Washington
USA

ABSTRACT

The in-context learning capabilities of LLMs like GPT-3 allow an-
notators to customize an LLM to their specific tasks with a small
number of examples. However, users tend to include only the most
obvious patterns when crafting examples, resulting in underspeci-
fied in-context functions that fall short on unseen cases. Further, it
is hard to know when “enough” examples have been included even
for known patterns. In this work, we present SCATTERSHOT, an
interactive system for building high-quality demonstration sets for
in-context learning. SCATTERSHOT iteratively slices unlabeled data
into task-specific patterns, samples informative inputs from under-
explored or not-yet-saturated slices in an active learning manner,
and helps users label more efficiently with the help of an LLM and
the current example set. In simulation studies on two text pertur-
bation scenarios, SCATTERSHOT sampling improves the resulting
few-shot functions by 4-5 percentage points over random sampling,
with less variance as more examples are added. In a user study,
ScATTERSHOT greatly helps users in covering different patterns in
the input space and labeling in-context examples more efficiently,
resulting in better in-context learning and less user effort.

ACM Reference Format:

Tongshuang Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, and Marco Tulio
Ribeiro. 2022. SCATTERSHOT: Interactive In-context Example Curation for
Text Transformation. In IUI *23: Proceedings of the 28th Annual Conference
on Intelligent User Interfaces. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION

In-context learning [70] is a property of Large Language Models
(LLMs), where a user can “write” a transformation function via an

“The work was mostly done when the first authors was a PhD student at the University
of Washington.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IUI 23, 2022, Sydney,Australia

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

Hua Shen
huashen218@psu.edu
Pennsylvania State University

Daniel S. Weld

weld@cs.uw.edu
University of Washington &
Allen Institute for Artificial
Intelligence

Marco Tulio Ribeiro
marcotcr@microsoft.com

Microsoft Research
USA

(optional) short set of instructions and a few (input, output) exam-
ples. For example, writing a function that “translates” a holiday
name (e.g. “Christmas”) into its calendar date (e.g. “12/25”) would
previously require a complicated rule-based system capable of map-
ping various kinds of subtly different inputs (e.g. “Xmas”, “Christ-
mas day”, etc) to a lookup table of dates. With LLMs like GPT-3 [7],
the process is much simpler. A user can achieve the same functional-
ity with a prompt (i.e., a natural language instruction) that contains
a small number (e.g., two) of simple demonstrations, followed by
a query (underlined): “Christmas => 12/25; Halloween => 10/31;
Independence Day (US) =>”". GPT-3 would take the prompt and
return the right date “7/04” for this query. More impressively, LLM
will also have some generalizability towards semantically relevant
queries, e.g., queries with abbreviations (“xmas => 12/25”, “nye =>
12/31”), misspellings (“s patrics day => 03/17”), lesser-known name
variations (“All Saints’ Eve => 10/31”), and holidays that might be
overlooked (e.g.,“Harriet Tubman Day => 3/10”). The much reduced
programming effort (compared to e.g., rule-based systems) draws
users’ attention towards building their personalized in-context func-
tions in various use scenarios, including code generation, question
answering, creative writing, and others [36, 54, 64].

Although in-context learning has great potential, the quality
of the learned function for non-trivial tasks depends on which in-
context examples are used as demonstrations [32, 46]. Techniques
for automatic example selection [30] depend on existing labeled
datasets and tasks that can be evaluated automatically (e.g., classifi-
cation), and thus users “in the wild” rely on their own ingenuity and
intuition when coming up with demonstrations [21]. Unfortunately,
users tend to focus on the most obvious and memorable patterns
for demonstration [18], leading to systematic omissions [66] and
underspecification that might go unnoticed. As an example, in Fig-
ure 1 we use in-context learning to build a function to extract and
normalize temporal information from a sentence [9]. Most users
would provide demonstrations with common date formats (e.g. “Oct.
23, 1999”), and some might remember relative date references (e.g.
“today”). However, some patterns are easy to miss, e.g. long-form
dates with no capitalization or holidays (e.g. “nineteen ninety-six”,
“Thanksgiving Day” in Figure 1C), and the LLM may fail to learn
them if they are omitted. Even sampling random examples from the
unlabeled data might lead to the repetition of common patterns (Fig-
ure 1B) at the expense of demonstrating less-common ones. What

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

U1 °23, 2022, Sydney,Australia

Tongshuang Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, and Marco Tulio Ribeiro

Random sampling

Existing in-context examples

[Posted: 1989-10-31] Slepian was killed on Oct. 23, 1999
Oct. 23,1999 == 1999-10-23

[Posted: 2000-01-05] Photo: today.
today == 2000-01-05

[Posted: 1989-10-31] It will control 5% of jewelry business
N/A

[Posted: 2014-12-25] @viereedom Merry Christmas!
Christmas == 2014-12-25

ScatterShot

[Posted: 1989-10-27] The sale will be due on Nov. 1, 2004.

Nov. 1, 2004 == 2004-11-01

[Posted: 1989-10-26] He Third period sales were $2.49 billion.

N/A

Users annotate

Slice-based input sampling
[Posted: 1998-02-27] nineteen ninety-six in Atlanta @

nineteen ninety-six == 1996 v @ nineteen ninety-six == 1996

[Posted: 2000-01-06] He was plucked on Thanksgiving Day. @
Thanksgiving == 2000-11-25 X
LLM output suggestion

Thanksgiving == 1999-11-25
Users inspect & edit

Figure 1: An overview of how human annotators can use SCATTERSHOT to iteratively collect effective in-context examples
for temporal expression extraction and normalization. The function extracts phrases with temporal meaning from sentences
(e.g.,“Oct. 23, 1999” in “Slepian was killed on Oct. 23, 1999”), and normalizes them into standard formats (“Oct. 23, 1999 ==
1999-10-23”) — the red spans represent information deleted from the input, and the green ones represent information generated
in the output. Given an in-context example set that is likely underspecifying the intended functionality (A), SCATTERSHOT
applies slice-based sampling to return unlabeled inputs that either have novel patterns or are difficult cases, and uses the
existing examples to drive an LLM (e.g., GPT-3) to suggest (possibly noisy) annotations, such that humans can correct the
suggested annotations and possibly expand the in-context example bucket. Compared to random sampling and manual labeling
(B), ScATTERSHOT helps humans re-allocate annotation budgets towards informative examples, and increases the in-context

function performance.

is worse, users may not know when they have provided enough
examples, and whether there are any uncovered patterns in the
unlabeled data. As a result, prior work summarized the two major
pain points of prompting to be (1) the effort required to source
examples for a prompt, and (2) the difficulty of evaluating whether
a prompt is improving [22].

In this work, we present SCATTERSHOT, an interactive system
for building high-quality demonstration sets for in-context learn-
ing. In a nutshell, SCATTERSHOT helps users find informative input
examples in the unlabeled data, annotate them efficiently with the
help of the current version of the learned in-context function, and
estimate the quality of said function. In each iteration, SCATTER-
SHOT automatically slices the unlabeled data into clusters based
on task-specific key phrases [66, 69]. For example, given the exist-
ing examples in Figure 1A, it finds a cluster based on holiday key
phrases (“Christmas”, “Thanksgiving”, etc.) and a cluster based on
exact dates like “Oct. 23, 1999” (among others). SCATTERSHOT keeps
a running estimate of the error of each cluster, and thus prioritizes
examples from clusters that have not yet been explored or learned
effectively. It further uses the stability of the current in-context
function with respect to minor changes in the prompt (e.g. ordering
of in-context examples), prioritizing unlabeled examples that get
different predictions with different prompt variations. Users are
then presented with examples of underexplored clusters (e.g., Figure
1 Cy), or hard examples of explored clusters (e.g., Cz, hard because
the past tense refers to the Thanksgiving date of the previous year).
Instead of having to label demonstrations from scratch, users can ei-
ther accept correct predictions from the current function (Fig 1 Cy)
or make edits to fix wrong predictions (Fig 1 Cz). These additional
labels are used to update the in-context function, such that the
user explores the different possible input patterns in an interactive

manner, without wasting resources on patterns that have already
been learned.

We evaluate SCATTERSHOT both in terms of sampling efficiency
and support for human annotators. In simulation experiments, we
compare the sampling strategy in SCATTERSHOT to random sam-
pling on two text transformation tasks contemplated in prior work:
the data wrangling task illustrated in Figure 1 [9], and rewriting
question-answer pairs into logically equivalent pairs in order to
evaluate model consistency [44]. In both cases, we find SCATTER-
SHOT improves performance on corresponding metrics (e.g., Rouge-
L, F1) by 4-5 percentage points, with less variance for various val-
ues of k demonstrations. Further, we conduct a within-subject user
study in which 10 participants build in-context functions for the
QA-pair rewriting task either (1) manually, (2) with the SCATTER-
SHoOT interface but random sampling, or (3) with the fully-featured
ScATTERSHOT. We show that SCATTERSHOT’s interface alone is
an improvement, by offloading input selection and providing sam-
ple outputs. Moreover, the sampling strategy in the fully-featured
SCATTERSHOT helps users notice diverse input patterns, leading to
improvements in the resulting in-context function. For example,
participants who thought their in-context examples were sufficient
when using random samples labeled an additional 1.4 times of ex-
amples after switching to full SCATTERSHOT (as they found new
patterns), which further improved the function test performance.
We conclude the paper with insights into challenges and opportu-
nities that arise from our experiments, including e.g., explaining
the sampling rationales, incorporating automated blind-spot detec-
tion, and the potential of using a SCATTERSHOT setup to help users
iteratively refine their task definition during data collection.

Interactive In-context Example Annotation for Text Transformation

U1 °23, 2022, Sydney,Australia

EXISTING FEW-SHOT EXAMPLES | PREVIEW THE PROMPT

[Posted: 2000-01-05] Photo: today .
today == 2000-01-05

[Posted: 1989-10-31] Slepian was killed on Oct. 23, 1999 .
Oct. 23, 1999 == 1999-10-23

[Posted: 1989-10-31] It hopes to control 5% of jewelry business
N/A

CANDIDATES NeZN\sWNNI=ANA=VNYe];]

[Posted: 2000-01-06] He was plucked on Thanksgiving Day
Thanksgiving Day == 2000-11-25

[Posted: 1998-02-27] nineteen ninety-six in Atlanta.
nineteen ninety-six == 1996

Extract all the mentioned dates as detailed as possible, in the ISO @

REMAINING INSPECTION BUDGET: 200

®+ 0l -

Extract all the mentioned dates as
detailed as possible, in the ISO

COUNT: 3 format of YEAR-MONTH-DAY.
+]0 - >> [Posted: 2000-01-05] Photo: today.
=> Today == 2000-01-05
s0-®
>> [Posted: 1989-10-31] Slepian was
O - killed on Oct. 23, 1999 . => Oct. 23,

1999 == 1999-10-23

>> [Posted: 1989-10-31] It hopes to
control 5% of jewelry business => N/A

+O—@

>> [[SELECTED ORIGINAL EXAMPLE]] =>

Figure 2: (A) The ScarTERSHOT interface, with (A;) task description, (Az) existing in-context examples, and (As3) candidate
examples awaiting human inspection. Through interactions A4 and As. Users can make edits to LLM outputs, sort the candidates
into positive demonstrative examples (+), negative ones (-), or just not include the candidate (O). The description and the
examples get transformed into raw text prompts. One set of in-context examples produces multiple prompts depending on
how the examples are ordered; (B) shows a prompt with one possible ordering.

2 THE DESIGN OF SCATTERSHOT

The goal of SCATTERSHOT is to help users iteratively find and label
high-quality demonstrative examples to build effective in-context
functions. In order to be effective, a function must be able to handle
common patterns (e.g., the temporal normalization function in
Figure 1 must be able to handle common temporal expressions
such as “today”), without neglecting less common ones (e.g.,
holidays such as “Christmas”). Further, we want the process to be
cost-effective, not wasting annotation effort on demonstrations
that are redundant with already covered patterns. To achieve these
goals, we design SCATTERSHOT to respond to every user interaction
by offering assistance in three areas:

e Help the user discover previously unexplored patterns.
In each iteration, SCATTERSHOT uses existing demonstrations
and users’ past interactions to cluster the remaining unlabeled
data into task-specific slices. Such slices map the input space for
users to explore.

e Help the user prioritize the most informative examples.
SCATTERSHOT uses the current in-context function to estimate
the difficulty of slices and examples, prioritizing unexplored
slices or slices and examples where the current function is not
yet performing well. We call this variant of active learning slice-
based sampling.

e Minimize annotation cost. Rather than providing a gold out-
put label from scratch for each example, the user is presented
with the best guess output from the current in-context function
(updated at every step), which they either accept when correct
or edit the incorrect parts.

We wrap these functionalities with a lightweight interface, where
at each round, users are presented with a batch of unlabeled exam-
ples to be (potentially) added to the set of demonstrations. Thus, at

each round, users get a “picture” of their current in-context func-
tion, and interact with it for improvement. We now detail each one
of these components.

2.1 Interactive Interface

We present SCATTERSHOT as an interactive interface, shown in
Figure 2. The interface contains a task description (A1) and existing
in-context examples as demonstrations, presented as input-output
pairs (Az). These pairs are color-encoded based on the text editing
distance, with the spans deleted from the input in red, and the
spans added in green. Both the description and demonstrations
are editable, and are automatically translated into an LLM prompt
(Figure 2B) with the task description, demonstrations in the format
» [example input] => [example output], and a candidate input
for the LLM! to transform into an output.

Below the existing examples, SCATTERSHOT proposes a batch of 5
candidate inputs sampled from the unlabeled dataset, with outputs
computed with the current version of the in-context function (As),
using the prompt in Figure 2B. Users then verify the candidates and
provide feedback (A3), editing outputs to fix mistakes when needed
(e.g., changing from “Thanksgiving == 2000-11-25” to “Thanksgiv-
ing == 1999-11-25", A4), and adding or removing examples to the
few-shot examples for in-context learning (As). In addition to sav-
ing annotation time, LLM-generated outputs help users assess the
quality of the current version of the in-context function. For exam-
ple, if all LLM outputs are correct for a few consecutive batches, it
is likely that the existing few-shot examples cover the patterns in
the unlabeled data, and thus labeling can stop.

The interface is task-agnostic and can be used whenever users
want to learn one-on-one text mapping between text inputs and
outputs. This format is flexible, encompassing both classification
tasks (where the output is just the class name) and generation tasks

LAl of our studies and experiments are run on GPT-3 [7], https://beta.openai.com/

https://beta.openai.com/

U1 °23, 2022, Sydney,Australia

Tongshuang Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, and Marco Tulio Ribeiro

Input-output pairs, iteration 1 toi — 1
| nineteen ninety-six

O]

today .

Thanksgiving
Thanksgiving

PRON
DATE
NUM years ago

®
Key phrase templates @
@

Extract key phrases & slices

Key phrases & data slices, iteration i
Atlanta nineteen ninety-six ”:‘1‘39
m=
It hopes to control 5% of jewelry business y—4
19 - 20 October, Chevron House u=4.82
Christmas n=19
HALLOWEEN s
Thanksgiving u=4.34
24 years ago n=31
One year ago Zfi
But it's already 10 months ago!! u=3.61
today n=113
m=3
today k=3
yesterday u=1.14

Figure 3: An overview of SCATTERSHOT’s slice-based sampling. We use the data status from 1 to i — 1-th iteration to perform
sampling for the i-th iteration. As shown in (A), we use the already sampled input-output pairs to extract templates for task-
specific key phrases. We use these templates to extract key phrases for each unlabeled input, which are the blue highlights in
(B). For example, PRON helps extract “Christmas” from “@virreedom Merry Christmas!”. We run Agglomerative Clustering on
the sentence embedding of these key phrases to find task-specific data slices, which contain both not-yet labeled examples
(marked with “?”) as well as those that have been sampled (“/” for correctly predicted in previous iterations and “X ” for
incorrect predictions). We rank these slices by an award function y based on slice size, estimated model performance, and

sample frequency, and draw samples from the top clusters.

like summarization, though the color encoding would be most
effective for text transformation tasks where the edits from inputs
to outputs are worth highlighting. For example, Figure 5 shows
how the same interface is used for another question-answer pair
rewriting task. SCATTERSHOT can be easily invoked in a Jupyter
Notebook, and therefore can support users’ natural workflows.

2.2 Slice-based Sampling

2.2.1 ldentifying patterns with key phrase clustering.

To help users explore both common and less common patterns, we
need a way to partition the unlabeled input examples. While there
are a variety of task-agnostic distance metrics that could be used for
clustering (e.g., cosine similarity of sentence embeddings [43]), our
preliminary exploration indicated that these are typically too coarse
when applied to specific tasks. For example, using the embeddings
from Reimers and Gurevych [43], “Took a photo today.” is closer to
“Saw a photo on Flickr” (similarity = 0.56) than to “Are you going to
yoga class today?” (similarity = 0.30). While this may make sense in
the abstract, it does not correspond to how we would want to slice
examples for the temporal extraction task in Figure 1, where date
references “today” are more important than subject matter (“photos”
vs “yoga class”). Thus, we propose a task-specific clustering method
based on key phrases as explained below.

Detecting key phrases in demonstrations. While key phrase
extraction in general may require domain knowledge [8, 42, 65],
for text transformation we can leverage the signal present in the
relationships between input and output, i.e., in which parts of the
input are perturbed or retained. For example, “today” is retained in
the output of both “Took a photo today” and “Are you going to yoga
class today?” (among many other samples), and thus it is probably

a key phrase. Formally, given a labeled, positive example, i.e., a
pair of original and perturbed sentences f(x) => y, we extract
as key phrases either the unmodified parts of x when most of x
is changed (Levenshtein edit distance d(x,y) > 0.5, as is the case
with the “today” examples above), or the modified parts when most
of x remain unchanged.

Applying key phrases to unlabeled inputs. Applying key
phrases naively with an exact match would yield low coverage
in the unlabeled data (especially for larger phrases). To get more
coverage, at each iteration, we generalize key phrases extracted
from labeled demonstrations into templates with combinations of
tokens, lemmas, and part-of-speech tags [66, 69], e.g.,“today” is
expanded into today, NOUN, and DATE. We then select representative
templates with a greedy weighted set coverage algorithm based on
their specificity and the number of inputs they cover [59]. Example
templates at various abstraction levels are shown in Figure 3A.

Key phrase clustering. We define the distance between two
inputs as the minimum cosine distance between the sentence em-
beddings [43] of their key phrases, and use agglomerative cluster-
ing [33] to recursively merge pairs of clusters in the unlabeled data.
We set the number of clusters to 20 (chosen empirically in Sec-
tion 3), and aggregate all clusters with < 10 examples into a single
“outlier” cluster (Figure 3B1). Note that we recompute clusters in
every iteration, and thus the outlier cluster tends to shrink as the
user interacts with the system. Figure 3B contains various examples
of discovered clusters.

Note that as a result of the weighted coverage selection, the
templates — and thereby the extracted key phrases — are dynami-
cally changing, and will eventually become more dominant in the
sampling procedure: when the few-shot set contains only a few

Interactive In-context Example Annotation for Text Transformation

U1 °23, 2022, Sydney,Australia

[Posted: 2014-12-25] @viereedom Merry Christmas!
Unanimity voting
‘/d ee - Christmas == 2014-12-25
e Christmas == 2014-12-25
e e Christmas == 2014-12-25

[Posted: 1998-02-27] Atlanta nineteen ninety-six.
Unanimity voting
ee nineteen ninety-six == 1996-01

® nineteen ninety-six == 1996
000 1996 ==1996

Manual inspection
\L Edit nineteen ninety-six == 1996
X

Figure 4: An illustration of SCATTERSHOT’s two-step correctness estimation. When the in-context function demonstrates
reasonable quality in the last two iterations, we first employ unanimity voting, i.e., we use three different orderings of in-context
examples (noted with the three dots with different grey shades) to get three outputs, and say the function is correct if all the
outputs are the same, without showing the input to the human (A). When the outputs are different, we return the one with the
highest output probability for user inspection (underlined), in which manual editing would imply that the function is wrong (B).

(e.g., 3) seeding examples, the templates might be biased or even
non-existent, most examples will just use the full sentences as key
phrases, making it similar to vanilla clustering on full examples.
However, as we add more examples, the templates will be more
balanced and eventually stabilize, at which point the clustering can
rely more on the extracted key phrases.

2.2.2 Selecting slices for exploration.

We want to explore the identified slices in an efficient way, avoiding
slices already “solved,” and making the user discovers any unex-
plored patterns. We take inspiration from the UCB algorithm [4],
and use an upper bound estimate of the error of our function in each
slice as part of the “reward” for sampling from that slice. Formally,
suppose slice ¢ has n examples, m of which are labeled in previ-
ous iterations (see the next section for “labeling” details). Further,
suppose that out of the m previously labeled examples, the current
function is correct on k.? The reward of drawing from slice c at
iteration i is then given by:

k [Ini
pic=(1-—=): Inn + s
m m

—— ~Y— ~——
Error Rate Size Sample Rarity

In other words, we prioritize large slices (In n), low performance (1—
k/m), and slices that have not been sampled many times (y/Ini/m,
which would give higher weights to clusters with smaller m as the
iteration i progresses). Thus, we avoid wasting annotation effort
on slices that are already “solved”, but keep drawing from slices we
can’t yet deal with and slices we have not yet explored.

Figure 3B shows four data slices in temporal extraction ranked
by reward p. D is the “outlier” cluster, where patterns are not yet
apparent. This slice still gets prioritized due to its large size (n =
449), even though it has been sampled m = 10, which encourages
either higher accuracy or further slicing in follow-up iterations.
) is a slice with holiday-based key phrases. Though the slice is
small (n = 19), the LLM failed whenever it was previously sampled
(k/m = 0), and thus it currently represents a hard pattern. 3 is a
slice with past date references, while (@) is a slice with the common
temporal pattern represented by the words “today”, “yesterday”, and

2If an example is in the in-context set, we perform cross-validation and predict its
output using the remaining examples.

“tomorrow”. This last slice has low priority despite being common,
since the LLM had perfect accuracy whenever a sample from it was
drawn. To maximize diversity (similar to batched active learning [12,
17, 48]), we rank the slices by reward and select one example from
each until the batch is filled (in our case, batch size = 5).

2.2.3 Saving user effort with implicit labels and pseudo-labeling.
As mentioned above, our per-slice performance estimation requires
labeled examples. Unfortunately, we only have firm labels on user-
added in-context examples, which may be quite small, especially
if users only add a portion of the sampled data. As a result, in-
context examples offer limited power for estimation. Although
we can modify the interface to collect additional user labels on
output correctness, it requires additional interaction that can be
cumbersome. To save user effort, we use implicit labeling, i.e., we
label the LLM output of an example in a batch as correct if the user
does not make any changes to the output, even if they do not add it
to the in-context demonstration set. Of course, users might ignore
model errors if they are frustrated or distracted, but we verified in
pilot experiments that users almost always make corrections in the
presence of model mistakes (~87% of the time, and the selection
method is robust to this small amount of noise). In comparison
to explicit labeling, this method requires the bare minimum user
interaction, and is easier to integrate into iteration workflows.
Still, implicit labeling requires users to actually see and interact
with a sample. However, after a certain point in the process, the LLM
is correct often enough that many interactions would simply be
“accepted” (no changes) by the user. While important for estimating
slice accuracy, too much of such interaction might also lead users to
overestimate the in-context function quality, and stop the process
before they explore the remaining slices. Thus, after we reach a
threshold of quality (LLM is correct on 70% of examples in two
consecutive rounds), we start leveraging pseudo-labeling with una-
nimity voting, a method inspired by the unanimity principle [23] and
Query-by-Committee [34]. Following Lu et al. [32]’s observation
that the order of in-context demonstrations can drastically change
LLM performance, we form three different prompts by randomly
reordering the examples. When the outputs of the prompts agree
(i.e., are unanimous), we use that output as a pseudo-label, used both
for estimating slice accuracy and as a filtering method (i.e., these ex-
amples are not shown to the user). Figure 4 illustrates this process,

U1 °23, 2022, Sydney,Australia

Tongshuang Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, and Marco Tulio Ribeiro

EXISTING FEW-SHOT EXAMPLES | PREVIEW THE PROMPT

Q: Where are the buildings? A: in distance

Q: Are the buildings in distance? A: yes

Q: Why is it dark? A: twilight

Q: Is it dark because of the twilight? A: yes
Q: Is the water warm or cold? A: cold

Q: Is the water cold? A: yes

Q: Is it mating season? A: yes

N/A

CANDIDATES NeV\oN.N\[SACY.N o1]

Q: What time does the clock say? A: no clock
Q: Is there clock? A: no

Q: Why is she posing? A: for grad photo

Q: Is she posing for grad photo? A: yes

Rewrite the following question-answer pair to a logically equ:

COUNT: 4

REMAINING INSPECTION BUDGET: 200

+[0] -
+[0] -

Rewrite the following question-—
answer pair to a logically
equivalent alternative pair.

>> Q: Where are the buildings? A: in
distance => Q: Are the buildings in
distance? A: yes

>> Q: Why is it dark? A: twilight =>
- Q: Is it dark because of the
twilight? A: yes

O 00 |0

>> Q: Is it mating season? A: yes =>
N/A

>> Q: Is the water warm or cold? A:
cold => Q: Is the water cold? A: yes

>> [[SELECTED ORIGINAL EXAMPLE]] =>

Figure 5: The ScCATTERSHOT interface on the question-answer pair implication task.

where “@viereedom Merry Christmas” (A) is pseudo-labeled due
to unanimity, and “Atlanta nineteen ninety-six” (B) yields different
predictions, and thus is shown to the user for manual inspection.

3 SIMULATION EXPERIMENT: SCATTERSHOT
SAMPLING VS. RANDOM SAMPLING

In this section, we measure the effectiveness of slice-based sampling,
when compared to random sampling on two text transformation
tasks. We use datasets for which we have labels on both tasks, so
that we can simulate the labeling process with an oracle at scale, and
evaluate the learned function on a held-out portion of each dataset.

3.1 Tasks and Datasets

Temporal expression extraction and normalization. The
Temporal task involves data wrangling [60], where the goal is
extracting phrases with temporal expressions from sentences or
documents, and normalizing them into a standard format [9]. As
shown in Figure 1, these can include absolute or relative dates, and
can have different granularity (e.g., exact date vs. year only).

Data. We take the data from [2], containing temporal expres-
sion datasets, including TimeBank [41] (news articles) and TweeT-
ime [55] (tweets). We process each dataset into sentences, discard-
ing any date annotations that could not be normalized to the format
YYYY-MM-DD (for consistency), and keeping sentences involving
absolute dates, dates relative to the document publication date,
or no time expressions at all (as the pool for negative examples).
This resulted in 491 examples with YYYY-MM-DD outputs, and 369
negative examples with the output N/A. We sample 100 examples
randomly from this dataset as a test set, and use the remaining
examples as our unlabeled pool in the experiment.

Evaluation. Following Chang and Manning [9], we report F1,
recall, and accuracy both for the temporal expression extraction
and normalization separately.

Question-Answer Pair Implication. For the QA-pair task, we
use SCATTERSHOT to replicate transformation functions from prior
work. Given a question-answer (QA) pair, Ribeiro et al. [44] wrote a
rule-based system (over 1,000 lines of code®) to generate a new QA
pair that is implied by the original pair, to check whether question
answering systems are consistent in their reasoning. We replicate
their logical equivalence transformation, where the original QA is
rewritten to a logically equivalent form, e.g. “Q: What room is this?
A: bathroom” is transformed to “Q: Is this a bathroom? A: yes”.
Despite the heavy engineering, the rule-based system is not able
to cover many inputs, and often produces text that does not look
fluent or natural. We thus apply in-context learning to this task,
and use SCATTERSHOT to select the examples.

Data. We download the input sentences and rule-based impli-
cations from Ribeiro et al. [44], and manually inspect and label
1,000 randomly sampled QA pairs (351 rule-based implications
were noisy and had to be relabeled). We randomly sample 100 pairs
as a test set, and use the remaining pairs as our unlabeled pool in
the experiment.

Evaluation. We follow the standard in text generation and re-
port the Rouge-L F scores [28], as well as BLEU-4 [28].

3.2 Procedure and Baseline

We compare ScatterShot’s slice-based sampling with a Random sam-
pling baseline, which is the most common sampling method used
especially in complex tasks, e.g., in text translation [1]. We use GPT-
3 as our underlying LLM, with greedy decoding (temperature=0)
in both conditions. In each simulation run, we start the process
with three random samples (the same for both conditions) of input-
output. At every iteration, we compare the ground truth label with
the candidate label proposed by the current in-context function.
When the labels differ, we add the pair (input, oracle output)
to the in-context example set, simulating the case where the user

3https://github.com/marcotcr/qa_consistency/

https://github.com/marcotcr/qa_consistency/

Interactive In-context Example Annotation for Text Transformation

U1 °23, 2022, Sydney,Australia

Table 1: Quantitative results comparing ScATTERSHOT with the random baseline on Temporal and QA-pair, averaged over 10
random seeds. SCATTERSHOT outperformed the baseline on all metrics. The significant improvements, measured by student’s

t-test are marked with *: p < 0.05, and **: p < 0.01.

. Extraction Normalization Conditions ROUGE-L BLEU-4
Conditions
F1 Precision Recall F1 Precision Recall Rule-based 78.4 66.7
Random 73.2+40 740+38 729+4.1 668 +3.2 67.3 +3.3 67.0 + 3.1 Random 74.3 +3.9 65.4 £3.5
SCATTERSHOT 75.0 +£2.9 75.6+x2.8 74.7+29 709 +3.4™ 713 +3.5° 71.2 +3.2™ ScATTERSHOT 80.0 + 3.5 69.1 + 3.1*
(a) Temporal (b) QA-pair

Table 2: Example outputs from transformation functions built in ScATTERSHOT and Random condition, and from a rule-based
system [44]. ScATTERSHOT functions tend to have better coverage, fluency, and correctness.

Coverage: Transforms more forms of inputs.

Input | Q: Are there more girls or boys? A: equal
Rule-based | X (No generation)
Random | v Q: Are the girls and boys equal in number? A: yes
ScATTERSHOT | X Q: Are the girls and boys equal? A: yes

Q: How many hairs does the sheep in front have? A: infinite
X (No generation)

X N/A

v Q: Does the sheep in front have infinite hairs? A: yes

Fluency: Generates outputs that sound natural.

Input | Q: What make is the phone? A: vtech Q: What does the woman have on her face? A: headband
Rule-based | X Q: Make is the phone vtech? A: yes X Q: Does the woman have on her face headband? A: yes
Random | v Q:Is the phone a vtech? A: yes v Q: Does the woman have a headband on her face? A: yes
ScATTERSHOT | v Q: Is the phone a vtech? A: yes v Q: Does the woman have a headband on her face? A: yes
Correctness: Produces desired outputs (the new question-pair are logically equivalent to the original pair).
Input | Q: What monument are they next to? A: unknown Q: What type of motorcycle is in the picture? A: mountain
Rule-based | X Q: Are they next to unknown? A: yes X Q:Is the mountain in the picture ? A: yes
Random | X Q:Is the monument unknown? A: yes X Q:Is the mountain type of motorcycle in the picture ? A: yes
ScATTERSHOT | v/ Q: Are they next to an unknown monument? A: yes | v Q: Is the motorcycle in the picture a mountain bike? A: yes

corrects a transformation and adds it to the set; Otherwise, the
oracle user does not perform any action, simulating cases where
the user ignores examples where the current in-context function is
correct.

The process is repeated until one of the following stopping con-
ditions is met: (1) the in-context example set contains more than
40 data points (exceeding the LLM maximum context size), (2) The
oracle user has been presented with 100 examples (i.e. annotation
budget is met), (3) the in-context function provided the correct out-
puts in five consecutive iterations, or (4) the in-context function’s
estimated accuracy for all slices of data is > 80%.

We run ten simulation rounds with different random seeds, and
report the (averaged) final function performance. We further track
the function improvement trajectory over iterations on three ran-
domly selected simulation rounds, by evaluating the intermediate
in-context functions after every five examples are added.

3.3 Results

As Table 1 shows, SCATTERSHOT s slice-based sampling outperforms
the baseline on both tasks. In Temporal, SCATTERSHOT improves the
F; for date span extraction by around 2 points, and the normaliza-
tion by 4 points. In QA-pair, SCATTERSHOT outperforms Random by

6 points on Rouge-L, and even outperforms the heavily engineered
rule-based system used to label most of the evaluation data, despite
needing 40 or fewer in-context examples. Table 2 shows qualita-
tive examples, where SCATTERSHOT outperforms both baselines in
terms of coverage, fluency, and correctness. These results point to
SCATTERSHOT’s potential on saving human efforts in creating fine-
grained functions, alleviating the need for handcrafting templates.

Figure 6 shows the trajectory of the in-context function quality
as the simulated user adds more examples, for three randomly
selected runs. SCATTERSHOT dominates the baseline at almost all
points in all runs, with the biggest gaps occurring when the number
of in-context examples is small. We see particular gains at n = 5, i.e.
when the first two examples are added to the seed examples. Our
hypothesis (based on qualitative observation) is that SCATTERSHOT
consistently selects examples that represent patterns not contained
in the seed examples, e.g., negative examples (where the outcome
is N/A) when all seed examples are positive. While SCATTERSHOT
helps users explore most patterns in the unlabeled data as they
reach higher n, early gains are especially useful in practice when
users have low annotation budgets, e.g., prior work notes users
selecting as few as five or ten examples [32, 38].

U1 °23, 2022, Sydney,Australia

Temporal-1

Temporal-2

Tongshuang Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, and Marco Tulio Ribeiro

Temporal-3

70% 70% n 70% Condition
- [<o M ® Random
& 60% v 60% w 60% Scattershot
> >
o - =
£ 50% Z 50% E s50%
g 7]]
E 40% B 40% B 40%
30% 30% 30%- ©
T T T 1 I T T T 1 I T T T 1
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

N(in-context examples)

QA-pair-1

Rouge-L
rouge

65% 65%

60% 60%

N(in-context examples)

QA-pair-2

80% 80% — / 80%
75% 75% 75% /‘\._./._/
70% 70% 70% | OO

®

N(in-context examples)

QA-pair-3

rouge

65%

60%

T T T 1 I T T
0 10 20 30 40 0 10 20

N(in-context examples)

N(in-context examples)

T 1 I T T T 1
30 40 0 10 20 30 40

N(in-context examples)

Figure 6: The in-context function performance trajectory, We evaluate the in-context function on the held-out test set every
time we add five more examples to the in-context bucket until the stop condition is satisfied. SCATTERSHOT tends to frequently
outperform Random, and tends to have less performance oscillation. Note that the y-axis is different for Temporal and QA-pair.

Finally, we observe that SCATTERSHOT is less liable to variance
in quality as more examples are added (e.g. in QA-pair-2, baseline
performance degrades by almost 15 points between n = 20 and n =
30). These results suggest that besides its interface and interactivity
benefits, SCATTERSHOT can improve in-context learning just by
virtue of its sample selection function. In order to evaluate the
benefits to actual humans, we now turn to a user study.

4 USER STUDY

ScATTERSHOT sampling is effective in simulation, but does it actu-
ally aid humans to articulate their desired functions? We conducted
a within-subject user study to evaluate whether human users can
sense SCATTERSHOT’s support in exploring the data space.

4.1 Study Design

Task & Participants. We ran a user study on the QA-pair task
using the same dataset as Section 3.1, with a split of 900 unlabeled in-
puts for participants to access, and 100 test examples for evaluating
the in-context functions they built. We recruited ten CS graduate
student participants (4 females, 6 males) on our CSE department
mailing list. Eight of them had previously used GPT-3 and two had
heard about it, but none were familiar with the task or SCATTER-
SuoT. Each participant spent around 60 minutes in the study.

Settings & Conditions. In order to isolate the effect of the dif-
ferent components in SCATTERSHOT, we have two ablation settings
in addition to our method: (1) Manual, where participants man-
ually craft prompts without any help from ScATTERSHOT, which
is the de-facto status-quo of practitioners creating their own in-
context learning examples. (2) Random, where participants use the
ScATTERSHOT interface with slice-based sampling disabled, i.e., they
review randomly selected examples. This condition still has the ben-
efit of an interactive interface, and uses the intermediate in-context

functions to suggest outputs and pseudo-label. (3) ScatterShot,
where participants have access to SCATTERSHOT, fully featured.

Every participant interacted with every setting in sequence and
in a cumulative manner, i.e., the in-context demonstrations gathered
in one setting carry over to the next, and we measured the additional
benefit of moving to the next setting. We divided the participants
into two groups, such that in one group the sequence is Manual
— Random — ScatterShot (M-R-S), while in the other it is Manual
— ScatterShot — Random (M-S-R). M-R-S represents a condition
where participants are gradually exposed to more features, such
that the step-wise gain maps directly to the benefit of the new
feature, while M-S-R serves as the counterbalanced condition that
combats the learning effect and the natural impact of accumulating
examples on function qualities.

Study Procedure. We designed our hour-long study to be self-
contained in a Jupyter Notebook,* and one of the authors was
present in all studies to ensure that participants understood the
task and to answer any questions.

Participants were first introduced to the basic concepts of LLM
(GPT-3), in-context example construction, and the study task. Then,
we randomly assigned the participants to one of the two conditions
(M-R-S or M-S-R), and they completed the task by going through
the three conditions in the assigned order. Participants were not
instructed on the difference between ScatterShot and Random, and
were instead told that “these two selection methods are randomly
ordered, and one is not necessarily better than another”

In each step (setting), participants were told to inspect the inputs
and current function outputs (available in ScatterShot and Random),
fix the erroneous outputs, and add demonstrations (input-output
pairs) to the in-context example bucket if they believed the data

4The full user study instructions, as well as the detailed exit survey, are in https:
//github.com/tongshuangwu/scattershot

https://github.com/tongshuangwu/scattershot
https://github.com/tongshuangwu/scattershot

Interactive In-context Example Annotation for Text Transformation

M-R-S Manual-Random @ Random-ScatterShot
Easier to use

Manual-Random
Manual-ScatterShot
Random-ScatterShot
ScatterShot-»Random

M-S-R Manual-ScatterShot

More diverse pattern

U1 °23, 2022, Sydney,Australia

ScatterShot-»Random

More difficult case Better estimate quality

Comparisons

Rating

Rating

Rating Rating

Figure 7: Participants’ subjective ratings on their perceived differences between different settings as they switch between them.
We use the rectangle to represent when participants first move from Manual (Step 1) to the SCATTERSHOT interface (either
ScatterShot or Random, Step 2), and circles to represent switches between SCATTERSHOT interfaces, from one sampling method
to the next (Step 2 to 3). Participants strongly preferred the SCATTERSHOT interaction to manual example annotation, and felt
they found more diverse patterns and difficult cases in ScatterShot than Random (Random— ScatterShot, blue). In contrast,
people in the reversed condition did not find Random more useful than ScatterShot (orange).

would add additional value, e.g., instances where the current context
function fails, as well as diverse input or output patterns. They were
asked to iterate within the step until they were satisfied with the in-
context function at hand, or accumulated 40 examples. To prevent
them from stopping too early, we also asked them to run at least
three batches (i.e., see 10-15 examples).> Afterwards, participants
completed an exit survey and a semi-structured interview, where
they rated their perceived experience in each of the two consecu-
tive steps. These questions concerned their perceived input/output
pattern diversity, the example difficulty, and their confidence in
estimating in-context function quality.

Collected Data. We observed and analyzed three sets of data.
First, to quantify the change in function quality, we saved par-
ticipants’ in-context examples per step, and applied them to the
held-out test set. Here, besides the absolute numbers as in Section 3,
we calculated the difference in performance between two consecu-
tive steps to see if adding (or, in the case of M-S-R, removing) ScAT-
TERSHOT features impacted the quality of examples participants
submitted. Second, to assess participants’ self-perceived experi-
ence, we used a standard five-point Likert Scale [27] to collect their
perceived step-wise differences. Third, to track participants’ anno-
tation trajectories, we logged their clickstreams in all the steps.
This included both the number of examples they examined per step,
the edits they made, and the number of examples they added.

4.2 Results

The ScaATTERSHOT interface made it easier to iterate on
in-context examples. As shown in Figure 7, participants’ found
moving from Manual (Step 1) to a SCATTERSHOT interface (Step
2) beneficial, regardless of the sampling setting. In particular, they
found that the interface made it easier and more intuitive to con-
struct the few-shot examples. (Easier to use in Figure 7, 4.7 + 0.7
for Manual— Random and 4.2 + 0.4 for Manual— ScatterShot). Users
liked the fact that SCATTERSHOT offers sample inputs (rather than
having to go through the dataset on their own), and the that the

5In Manual, this meant looking at three random batches of unlabeled data in the
Jupyter notebook.

interface provides easy access to all the existing in-context exam-
ples, allowing for fast back-and-forth iteration. For example, one
participant (P7) kept revisiting their examples, and removed some
earlier examples that they thought were less useful as they became
more familiar with the unlabeled input space.

As part of the interface, LLM-generated outputs helped partici-
pants craft examples more efficiently, e.g., P6 comments that “if is
less work to make edits than starting from scratch.” Somewhat sur-
prisingly, LLM-generated outputs also improved output diversity,
i.e., users considered more diverse output patterns. For example,
P10 commented that they were “pleasantly surprised by the LLM’s
clever output in several cases,” and that they would not have thought
about transformations such as “Q: Is there more than 1 boy? A: no”
— “Q: Is there no more than 1 boy? A: yes”, which they added to
their set of in-context examples. The observation is consistent with
prior work showing Al-induced creativity gains [62]. We note that
actual user behavior here differs from our simulation setup, where
we assumed human users would only add new examples when the
LLM output was wrong.

Participants’ perceptions matched ScCATTERSHOT’s slice-
based sampling design goals: more diverse and more challeng-
ing patterns. As shown in Figure 7, participants in M-R-S clearly
noticed the improvement moving from Random— ScatterShot (4.2
+ 1.2 for more diverse patterns and 4.8 + 0.4 for more difficult
case), whereas most users in M-S-R did not report improvements
from ScatterShot— Random. Qualitative results confirm this, e.g.,
P7 in M-R-S commented: “Step 2 (Random) provided me with some
worthy examples, but much less than Step 3 (ScatterShot). I went
through several rounds of pretty similar examples, thinking the func-
tion is behaving quite decently, and didn’t realize the function needed
more diverse and edge cases until I reached Step 3.” P9 in M-R-S was
also happy that ScatterShot helped them explore beyond typical
patterns. In contrast, P10 in M-S-R reflected that their exploration
seemed to have “quickly saturated in Step 3” (Random).

Despite not being given details, seven participants discerned the
goals behind SCATTERSHOT’s sampling method by interacting with
it. For example, P2 described it as “sample for additional variation
based on the patterns in existing examples, and also sample for exam-
ples similar to previous error mistakes to track whether the function

U1 °23, 2022, Sydney,Australia Tongshuang Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, and Marco Tulio Ribeiro
Table 3: The performances of participants’ in-context functions after each step. +/- represents the average performance change
compared to the prior step, whereas the number in the parentheses are the absolute performances. M-R-S participants were
able to keep adding useful examples, whereas M-S-R participants decreased the function performance by 0.6 in Step three
(ScatterShot— Random), indicating that these efforts were wasted.

Condition Step1 Step 2 Step 3 Condition Step1 — Step2 — Step 3
M-R-S /(59.3) +17.4(74.7) +3.2(77.8) M-R-S /(63.9) +10.1(74.0) +3.1(76.9)
M-S-R /(61.8) +18.1(75.4) -0.4(74.9) M-S-R /(653) +8.9(74.2) -0.6(73.6)

(2) ROUGE-L

has been corrected.” Two participants in M-S-R noticed that Ran-
dom presented fewer mistakes, but attributed it to the increasing
number of in-context examples (P5: “It’s getting more correct, but
I would expect it given that I have annotated more examples”). After
we explained the selection methods at the end, some users noted
that understanding the methods would have helped them better
calibrate their estimates of the learned function quality over time.

ScaTTERSHOT helped participants explore the input space
more holistically, and build better in-context functions. The
perceived data difficulty and diversity encouraged participants to
iterate more on their in-context examples. When looking at the
number of in-context examples added in each setting, participants
added 40% more examples in ScatterShot than Random when Scat-
terShot came after (M-R-S), and 20% fewer examples in Random
when Random came after (M-S-R), i.e., they stopped much earlier
when Random came after ScatterShot. These additional examples
are not only a result of more inspection effort (on average, partici-
pants in ScatterShot reviewed 20% more samples), but also that each
batch in ScatterShot was more likely to contain a good in-context
example — participants added 81% of the examples they inspected
in ScatterShot, but only 48% of the examples in Random.

We report the quality of the resulting in-context function on
the held-out set in Table 3, and note that Random— ScatterShot
consistently increases performance, while ScatterShot— Random
consistently decrease performance despite adding more in-context
examples, which is in line with our simulation results.

ScaTTERSHOT helped participants estimate function qual-
ity and “debug” their example set. As expected, participants
estimated their in-context function quality based on the candi-
date examples they reviewed. For example, P5 (M-S-R) tracked the
function convergence: ‘I made mental notes on the LLM errors and
hypothesized what types of examples were missing. For example, I
noticed the model was wrong on N/A questions at first, but later got
it right.” Participants in M-R-S seemed slightly more satisfied with
their estimation, with 4.2 + 0.9 in Manual— Random and then fur-
ther 4.3 + 0.7 Random— ScatterShot. P7 commented that “Step 2
showed me the function is quite smart on patterns it has already seen
and has high precision, and Step 3 showed me there are more patterns
and it has low recall”. P2 further reflected that Random’s sampling
“created a false impression of convergence, when the function still had
various blind spots.” The interactive process also helped participants
debug their example sets, e.g., P4 saw big performance drops (4/5
to 1/5 accuracy) on two consecutive batches, which led them to
remove in-context examples that were hurting performance.

(b) BLEU-4

Participants in M-S-R gave slightly lower ratings on their esti-
mates. Qualitatively, the fact that ScatterShot prioritized potential
mistakes seemed to discourage users, e.g., P3 noted they were driven
into “an endless blackhole of errors,” after which a round of repet-
itive patterns in Random was hard to make sense of. Once again,
this could have been mitigated by explaining the sampling strategy
to the users, and explicitly displaying the slice accuracy estimates
ScaTTERSHOT keeps track of.

5 DISCUSSION

In this work, we design a human-LLM collaboration mechanism
in SCATTERSHOT to help humans craft diverse and informative in-
context learning examples. By iteratively identifying data slices,
sampling from low-performance or unseen slices, and providing
best-guess outputs for the sampled examples, SCATTERSHOT not
only helps the collection of informative in-context examples, but
also supports users in exploring the input space and assessing the
function quality. At its core, SCATTERSHOT is built on three concepts:
data slicing and sampling, iterative human-model interaction, and
collaborative human-model labeling. We now discuss challenges
and potential future work for each of these.

Slice-based sampling can increase data space coverage. Our
experiments showed that sampling from diverse and difficult data
slices improves in-context function performance. Importantly, these
slices cannot be surfaced via clustering on task-agnostic embed-
dings; rather, task-specific features should be considered to group
examples, while task-irrelevant noise should be minimized. How-
ever, identifying these task-specific features remains a challenge.
While effective for our function examples (and many others), key-
phrase and template extraction would not generalize to tasks where
input and output have little syntactic overlap, e.g., English-French
translation, summarization, etc. Future work should look into in-
corporating more general slicing methods, e.g., asking practition-
ers for slicing functions [11, 42, 65], automatically detecting blind
spots [16, 47], etc.

In addition to data slicing, the sampling algorithm also plays a
crucial role in narrowing down the actual slices to sample from. We
adapt the UCB algorithm to prioritize slice size, performance, and
sample rarity, but there are other interesting dimensions that could
be explored. For example, if there are slices that cannot be learned af-
ter several rounds of sampling, UCB may be counterproductive and
create a biased in-context example set that performs worse on other
slices, whereas a strategy that penalized or just “gave up” on those
slices might produce a better overall function. Moreover, we might
want to explore better methods for example ranking within a slice.

Interactive In-context Example Annotation for Text Transformation

Interacting with the latest function is essential for in-
context learning. In-context learning enables rapid function up-
dates, which are not possible in other current interactions with
models (e.g., finetuning often takes long hours, and is often not
suitable for interactivity). Allowing users to interact with the most
current version of what is being learned helps them track progress,
and backtrack when they introduce cascading errors [22]. The setup
in SCATTERSHOT is a step in this direction, since users always inter-
act with the latest version of the in-context functions.

While participants were making progress with SCATTERSHOT
(more than with baselines), some participants felt frustrated by
inspecting mistake after mistake, fearing that they would never be
able to produce a good enough function. While this is by design
(ScATTERSHOT prioritizes potential errors), it might compromise
annotators’ estimates of the quality of their function, and their moti-
vation for labeling more examples. Thus, we notice the importance
of presenting quality metrics to the user and clearly explaining
the sampling function so that the right expectations are set. For
example, users may perform better mental calibration if they have
access to hints like the number of slices that are considered “solved”
(e.g., as a progress bar that allows people to zoom into concrete
examples grouped by the slice), cross-validation accuracy on in-
context examples, etc. Another alternative would be to let users
exercise more control over which slices are explored, e.g., allowing
them to “drill down” or “give up” on specific slices.

Human-AI collaborative labeling for building better func-
tions with respect to better quality and better task definition.
Essentially, SCATTERSHOT enables human-LLM collaboration on
data annotation. In our work, we mostly focused on evaluating
the quality benefit of such annotation, but we observed additional
interesting gains in bringing people inspiration. In Section 4, we
notice that participants can take inspiration from the LLM not only
on the input patterns, but also on potential output patterns even
though our QA-pair task is relatively deterministic in its transfor-
mations. Thus, we hypothesize that similar systems supporting
human-LLM collaborative labeling could play an important role in
helping users iteratively refine their task definition and function
behavior during data collection. Prior work has shown that anno-
tation requesters refine their labeling instructions when they see
noisy (and therefore unusable) crowdsourced labels on ambiguous
examples. However, we have yet to examine how LLMs’ sugges-
tions (good or bad) might help users better specify their functions.It
would be interesting to systematically analyze and measure users’
own distribution shift as the example set expands. Recently, Lee
et al. [25] proposes the “retaining rate” of LLM suggestions (in their
case, suggested character names subsequently used in novels) as
a metric of the usefulness of LLMs for ideation. An analogue to
our case would be measuring the appearance of new patterns data
slices when users use SCATTERSHOT, compared to when they come
up with their own patterns.

6 RELATED WORK

6.1 LLMs and In-context Learning

Transformer-based large language models (LLMs) [58] have re-
cently led to large improvements in NLP. Pre-trained on a large

U1 °23, 2022, Sydney,Australia

amount of unlabeled text data, these models encapsulate rich, general-
purpose features of language both syntactically and semantically.
These features can help facilitate various downstream applications
much more dynamically [31] — rather than having to train a new
model for every custom task, users can just customize the model by
feeding it natural language prompts at run time, like the holiday
in the previous section. Such ability to recognize the desired task
on-the-fly is called in-context learning [7].

The flexible in-context learning intrigues various work to ex-
plore designing prompts that can effectively invoke the user desired
functionalities [35, 37, 46, 70]. To date, the most common patterns
for prompting are either zero-shot or few-shot prompts. Zero-shot
prompts directly describe what ought to happen in a task. For ex-
ample, we can enact the holiday date translator in Section 1 with a
task description prompt: “Identify the date for a national holiday in
the month/date format.” Studies on improving zero-shot prompts
typically study the effect of task instructions [15], induce LLM rea-
soning through task decomposition [63, 67], etc. Zero-shot prompts
do not use demonstrative examples and therefore tend to be less
performative [7], but writing just the natural language descriptions
is lightweight enough that it creates an intuitive natural language
interface between humans and the model [64].

In contrast, few-shot prompts show the LLM what pattern to
follow by feeding it examples of the desired input and output data.
As can be seen in Section 1, given examples on “Christmas” and
“Halloween”, the LLM would produce a reasonable date for “Indepen-
dence Day”. These examples usually follow consistent structures
with meaningful prefixes (“Holiday: [name] => Date: [date]”), which
helps re-emphasize the desired intent [58]. The quality of few-shot
prompts heavily relies on the five to thirty in-context examples
that demonstrate the intended behavior [32, 46], and LLMs can
only perform in-context learning if it has seen the corresponding
distribution or concept [35, 46, 70]. If developers omit corner cases
in the few examples they created, the task quality can easily be
affected [29]. For example, without a negative example where we
denote ineligible inputs with a placeholder output “N/A” (“Holiday:
yesterday => Date: N/A”), the LLM would attempt to produce the
most plausible “label” even for negative examples — It may try to
normalize “yesterday” to a most plausible date even though there
is no holiday. Our work here tries to help users interactively iden-
tify high-quality in-context examples for text transformation. We
review the literature on in-context example selection next.

6.2 Effective Example Selection

Prior work has explored selecting effective demonstrations, and has
shown that because pre-trained models possess high-level semantic
features, sampling or active learning tends to help identify infor-
mative examples [56]. In particular, dynamically selecting (retriev-
ing) the most similar demonstrative examples for each given input
significantly improves in-context learning performance [10, 46].
However, such retrieval methods require fully labeled datasets as
the search space. In contrast, our work studies the scenario where
humans craft their personalized in-context functions, and therefore
focuses on an unlabeled space.

In the unlabeled search space, prior work has explored effective
dataset annotation that can support better in-context learning or

U1 °23, 2022, Sydney,Australia

few-shot finetuning. These studies strive to allocate annotation bud-
gets to diverse and representative examples through clustering [10]
or graph-based search [53]. For example, Su et al. [53] built a similar-
ity graph by computing pairwise distances between input sentences
and then iteratively selected and annotated examples based on
graph density. They show such selection substantially reduces the
annotation cost while achieving high and stable in-context learning
performance. Despite being effective, these methods sample exam-
ples purely for input diversity. Because our work focuses more on
supporting users’ interactive function construction, we additionally
emphasize current function quality in sampling, which helps users
track their progress and prioritize improving the current in-context
function. Moreover, these prior studies measures diversity with
cosine similarities on input sentence embedding [43] which, as we
argue in Section 2.2, is not reflective of various tasks [46]. As a
workaround, our work focuses on measuring similarities only on
the key phrase embeddings, which leads to more intuitive clusters.

On the interactive example selection side, our work is perhaps
more similar to some literature in programming-by-demonstration
(PBD). For example, Zhang et al. [72] explored effectively selecting
examples that can help disambiguate and validate synthesized regu-
lar expressions. We share similar motivations that interactively and
iteratively suggest corner cases help synthesize the right function,
but unlike PBD where new examples are always pruning the func-
tion search space, SCATTERSHOT focuses on expanding the function
coverage. Therefore, it is essential to select examples that incen-
tivize people to provide feedback.

Active Learning. Our work is also similar to the aforemen-
tioned, effective annotation work [10, 53] in the sense that its
selection method is akin to sampling approaches in active learn-
ing [49, 57]. The key idea behind active learning is that machine
learning models can achieve higher performance with fewer train-
ing examples, if it is allowed to choose its own, most informative
training examples. Given a budget, an active learner iteratively
selects examples-to-annotate from an unlabeled pool according
to some ranking mechanism. While the previous work is more
similar to diversity sampling [48], ours is closer to uncertainty
sampling [26], where an active learner queries the instances about
which it is least certain how to label. Because LLMs are generative
in nature and do not have clear probabilistic distributions across
all “labels” as in e.g., classification tasks, we estimate uncertainty
using the LLM output stability (unanimity voting) which also con-
veniently serves as a correctness estimation. This voting strategy
is also quite relevant to Query-By-Committee [50] where a list of
“committee” models trained on the same labeled set vote on the
labelings of query candidates. Other work has also been considered
directly representing LLM confidence with the average log proba-
bility of the entire output [53, 61], an alternative worth comparing
against in the future.

Importantly, while many empirical results suggest that active
learning is effective, it does suffer from certain limitations. For
example, the labeled examples are not drawn i.i.d from the under-
lying data distribution [49], and therefore can sometimes be imbal-
anced [40] or less effective than random sampling [20]. Our method
will likely share the same limitations, though we leave it to future
work to articulate scenarios where SCATTERSHOT is most useful.

Tongshuang Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, and Marco Tulio Ribeiro

6.3 Model-assisted Annotation

SCATTERSHOT can also be seen as offering assistance in data anno-
tation (for context learning). The idea of annotating data with both
humans and Al models in the loop has been explored broadly. In
this setup, Als can play various roles [71], e.g., they may generate
more examples that mimic difficult patterns [29, 45], select uncer-
tain examples for people to inspect [61], etc. SCATTERSHOT is closer
to work encouraging annotators to find model-fooling examples
(“adversarial data collection”) [6, 13, 14, 24]. In particular, Bartolo
et al. [5] found that in question-answering tasks, models trained on
these adversarially collected data can generalize better to more chal-
lenging examples. However, because of the overhead of re-training,
their analyses were performed post-hoc, i.e., they only updated the
model offline after collecting a large batch of challenging examples.
In contrast, we leverage the advantage of in-context learning, and
directly study the dynamic of in-context function update.

The iterative nature also links SCATTERSHOT to earlier work in
interactive machine learning (IML) [3, 68]. IML is a typical para-
digm that facilitates iterative and exploratory model understanding
and update — a system explains to users how the current model
makes predictions, and users in turn give feedback back to the
model, starting the cycle again. Labeling is one classic type of IML
feedback [19, 51]. However, because traditional ML tends to focus
much more on the surface features (e.g., count trigrams in a training
example without caring its semantic meanings), users find labeling
to be not powerful enough, and prefer richer controls like feature
selection [3, 39, 52]. Since LLMs have some capability to generalize
individual examples more broadly to its semantically similar ones,
we believe labeling in in-context learning would be more effec-
tive, and we use SCATTERSHOT to reactivate labeling-based IML for
in-context learning.

7 CONCLUSION

In this work, we present SCATTERSHOT, an interactive system for
building high-quality demonstration sets for in-context learning.
ScATTERSHOT helps users find informative input examples in the
unlabeled data, annotate them efficiently with the help of the cur-
rent version of the learned in-context function, and estimate the
quality of said function. Results from both a simulation study and a
10-person evaluation show SCATTERSHOT improves in-context func-
tion performance, as well as annotator’s awareness and handling
of diverse patterns. Our findings highlight the importance of data
slicing and sampling, iterative human-model interaction, and collab-
orative human-model labeling, and point to interesting future direc-
tions such as Al-assisted task definition refinement, more concrete
quality metrics that convey the in-context function progress, etc.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF awards 1901386
and 2040196, ONR grant N00014-21-1-2707, and a gift from the Allen
Institute for Artificial Intelligence (AI2). The authors thank the user
study participants for their valuable feedback, and anonymous
reviewers for helpful discussions and comments.

Interactive In-context Example Annotation for Text Transformation

REFERENCES

[1] Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke Zettlemoyer, and Marjan

[2

[9

[10

(11

[12

(13

[14

(15

[

=

]

]

]

]

Ghazvininejad. 2022. In-context Examples Selection for Machine Translation.
ArXiv preprint abs/2212.02437 (2022). https://arxiv.org/abs/2212.02437

Satya Almasian, Dennis Aumiller, and Michael Gertz. 2021. BERT got a Date:
Introducing Transformers to Temporal Tagging. ArXiv preprint abs/2109.14927
(2021). https://arxiv.org/abs/2109.14927

Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.
Power to the people: The role of humans in interactive machine learning. Ai
Magazine 35, 4 (2014), 105-120.

Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research 3, Nov (2002), 397-422.

Max Bartolo, Alastair Roberts, Johannes Welbl, Sebastian Riedel, and Pontus
Stenetorp. 2020. Beat the Al: Investigating Adversarial Human Annotation
for Reading Comprehension. Transactions of the Association for Computational
Linguistics 8 (2020), 662-678. https://doi.org/10.1162/tacl_a 00338

Max Bartolo, Tristan Thrush, Sebastian Riedel, Pontus Stenetorp, Robin Jia, and
Douwe Kiela. 2022. Models in the Loop: Aiding Crowdworkers with Generative
Annotation Assistants. In Proceedings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, Seattle, United States,
3754-3767. https://doi.org/10.18653/v1/2022.naacl-main.275

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a- Abstract.html

Angel Alexander Cabrera, Marco Tulio Ribeiro, Bongshin Lee, Rob DeLine, Adam
Perer, and Steven M Drucker. 2022. What Did My AI Learn? How Data Scien-
tists Make Sense of Model Behavior. ACM Transactions on Computer-Human
Interaction (2022).

Angel X. Chang and Christopher Manning. 2012. SUTime: A library for rec-
ognizing and normalizing time expressions. In Proceedings of the Eighth In-
ternational Conference on Language Resources and Evaluation (LREC’12). Eu-
ropean Language Resources Association (ELRA), Istanbul, Turkey, 3735-3740.
http://www.Irec-conf.org/proceedings/Irec2012/pdf/284_Paper.pdf

Ernie Chang, Xiaoyu Shen, Hui-Syuan Yeh, and Vera Demberg. 2021. On Training
Instance Selection for Few-Shot Neural Text Generation. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 2:
Short Papers). Association for Computational Linguistics, Online, 8-13. https:
//doi.org/10.18653/v1/2021.acl-short.2

Vincent S. Chen, Sen Wu, Alexander]. Ratner, Jen Weng, and Christopher
Ré. 2019. Slice-based Learning: A Programming Model for Residual Learning
in Critical Data Slices. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 9392-9402. https://proceedings.neurips.cc/paper/2019/hash/
351869bde8b9d6ad1e3090bd173f600d- Abstract.html

Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Ra-
jagopalan, Afshin Rostamizadeh, and Sanjiv Kumar. 2021. Batch active learning
at scale. Advances in Neural Information Processing Systems 34 (2021), 11933—
11944.

Emily Dinan, Samuel Humeau, Bharath Chintagunta, and Jason Weston. 2019.
Build it Break it Fix it for Dialogue Safety: Robustness from Adversarial Human
Attack. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Association for Computational Linguistics,
Hong Kong, China, 4537-4546. https://doi.org/10.18653/v1/D19-1461

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh,
and Matt Gardner. 2019. DROP: A Reading Comprehension Benchmark Requiring
Discrete Reasoning Over Paragraphs. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Association for
Computational Linguistics, Minneapolis, Minnesota, 2368-2378. https://doi.org/
10.18653/v1/N19-1246

Avia Efrat and Omer Levy. 2020. The Turking Test: Can Language Models
Understand Instructions? ArXiv preprint abs/2010.11982 (2020). https://arxiv.
org/abs/2010.11982

[16

(17

[18

=
2

[20

[21

~
&,

[23

[24

[25

[26

[27

[28

[29

[30

[31

(32]

[33

[34

U123, 2022, Sydney,Australia

Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher
Lee-Messer, Jared Dunnmon, James Zou, and Christopher Ré. 2022. Domino:
Discovering systematic errors with cross-modal embeddings. ArXiv preprint
abs/2203.14960 (2022). https://arxiv.org/abs/2203.14960

Yonatan Geifman and Ran El-Yaniv. 2017. Deep active learning over the long tail.
ArXiv preprint abs/1711.00941 (2017). https://arxiv.org/abs/1711.00941

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel
Bowman, and Noah A. Smith. 2018. Annotation Artifacts in Natural Language In-
ference Data. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers). Association for Computational Linguistics, New Orleans,
Louisiana, 107-112. https://doi.org/10.18653/v1/N18-2017

Florian Heimerl, Steffen Koch, Harald Bosch, and Thomas Ertl. 2012. Visual
classifier training for text document retrieval. IEEE Transactions on Visualization
and Computer Graphics 18, 12 (2012), 2839-2848.

Henrik Imberg, Johan Jonasson, and Marina Axelson-Fisk. 2020. Optimal sam-
pling in unbiased active learning. In The 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily,
Italy] (Proceedings of Machine Learning Research, Vol. 108), Silvia Chiappa and
Roberto Calandra (Eds.). PMLR, 559-569. http://proceedings.mlr.press/v108/
imberg20a.html

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach,
Michael Terry, and Carrie J. Cai. 2022. Prompt-based Prototyping with Large
Language Models. In Extended Abstracts of the 2022 CHI Conference on Human
Factors in Computing Systems.

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach,
Michael Terry, and Carrie J Cai. 2022. PromptMaker: Prompt-based Prototyping
with Large Language Models. In CHI Conference on Human Factors in Computing
Systems Extended Abstracts. 1-8.

Fereshte Khani, Martin Rinard, and Percy Liang. 2016. Unanimous Prediction for
100% Precision with Application to Learning Semantic Mappings. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, Berlin, Germany,
952-962. https://doi.org/10.18653/v1/P16-1090

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengx-
uan Wu, Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi
Ma, Tristan Thrush, Sebastian Riedel, Zeerak Waseem, Pontus Stenetorp, Robin
Jia, Mohit Bansal, Christopher Potts, and Adina Williams. 2021. Dynabench:
Rethinking Benchmarking in NLP. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Computational Linguistics, Online,
4110-4124. https://doi.org/10.18653/v1/2021.naacl-main.324

Mina Lee, Percy Liang, and Qian Yang. 2022. CoAuthor: Designing a Human-AI
Collaborative Writing Dataset for Exploring Language Model Capabilities. ArXiv
preprint abs/2201.06796 (2022). https://arxiv.org/abs/2201.06796

David D Lewis and William A Gale. 1994. A sequential algorithm for training
text classifiers. In SIGIR’94. Springer, 3-12.

Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of
psychology (1932).

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74-81. https://aclanthology.org/W04-1013

Alisa Liu, Swabha Swayamdipta, Noah A Smith, and Yejin Choi. 2022. Wanli:
Worker and ai collaboration for natural language inference dataset creation.
ArXiv preprint abs/2201.05955 (2022). https://arxiv.org/abs/2201.05955
Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2022. What Makes Good In-Context Examples for GPT-3?. In
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures. Association
for Computational Linguistics, Dublin, Ireland and Online, 100-114. https:
//doi.org/10.18653/v1/2022.deelio-1.10

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-
ham Neubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompt-
ing Methods in Natural Language Processing. ArXiv preprint abs/2107.13586
(2021). https://arxiv.org/abs/2107.13586

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.
2022. Fantastically Ordered Prompts and Where to Find Them: Overcoming
Few-Shot Prompt Order Sensitivity. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Dublin, Ireland, 8086-8098. https://doi.org/10.
18653/v1/2022.acl-long.556

Alena Lukasova. 1979. Hierarchical agglomerative clustering procedure. Pattern
Recognition 11, 5-6 (1979), 365-381.

Prem Melville and Raymond J. Mooney. 2004. Diverse ensembles for active
learning. In Machine Learning, Proceedings of the Twenty-first International
Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004 (ACM Inter-
national Conference Proceeding Series, Vol. 69), Carla E. Brodley (Ed.). ACM.
https://doi.org/10.1145/1015330.1015385

https://arxiv.org/abs/2212.02437
https://arxiv.org/abs/2109.14927
https://doi.org/10.1162/tacl_a_00338
https://doi.org/10.18653/v1/2022.naacl-main.275
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://www.lrec-conf.org/proceedings/lrec2012/pdf/284_Paper.pdf
https://doi.org/10.18653/v1/2021.acl-short.2
https://doi.org/10.18653/v1/2021.acl-short.2
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/351869bde8b9d6ad1e3090bd173f600d-Abstract.html
https://doi.org/10.18653/v1/D19-1461
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://arxiv.org/abs/2010.11982
https://arxiv.org/abs/2010.11982
https://arxiv.org/abs/2203.14960
https://arxiv.org/abs/1711.00941
https://doi.org/10.18653/v1/N18-2017
http://proceedings.mlr.press/v108/imberg20a.html
http://proceedings.mlr.press/v108/imberg20a.html
https://doi.org/10.18653/v1/P16-1090
https://doi.org/10.18653/v1/2021.naacl-main.324
https://arxiv.org/abs/2201.06796
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2201.05955
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://arxiv.org/abs/2107.13586
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.1145/1015330.1015385

U1 °23, 2022, Sydney,Australia

[35]

[36

<
=

[38

[39

[40

[41]

[42

[43

[44

N
&

[46

[47

[48]

[49

(50

[51

[52]

[53]

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work? ArXiv preprint abs/2202.12837 (2022).
https://arxiv.org/abs/2202.12837

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022.
Cross-Task Generalization via Natural Language Crowdsourcing Instructions.
In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Dublin, Ireland, 3470-3487. https://doi.org/10.18653/v1/2022.acl-long.244
Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022.
Cross-Task Generalization via Natural Language Crowdsourcing Instructions.
In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Dublin, Ireland, 3470-3487. https://doi.org/10.18653/v1/2022.acl-long.244

Joon Sung Park, Lindsay Popowski, Carrie J Cai, Meredith Ringel Morris, Percy
Liang, and Michael S Bernstein. 2022. Social Simulacra: Creating Populated
Prototypes for Social Computing Systems. ArXiv preprint abs/2208.04024 (2022).
https://arxiv.org/abs/2208.04024

Kayur Patel, James Fogarty, James A Landay, and Beverly Harrison. 2008. In-
vestigating statistical machine learning as a tool for software development. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
667-676.

Remus Pop and Patric Fulop. 2018. Deep ensemble bayesian active learning:
Addressing the mode collapse issue in monte carlo dropout via ensembles. ArXiv
preprint abs/1811.03897 (2018). https://arxiv.org/abs/1811.03897

James Pustejovsky, Jessica Littman, Roser Sauri, and Marc Verhagen. 2006. Time-
bank 1.2 documentation. Event London, no. April (2006), 6-11.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017. Snorkel: Rapid training data creation with weak supervision.
In Proceedings of the VLDB Endowment. International Conference on Very Large
Data Bases, Vol. 11. NIH Public Access, 269.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, Hong Kong, China, 3982-3992. https://doi.org/10.18653/v1/D19-1410
Marco Tulio Ribeiro, Carlos Guestrin, and Sameer Singh. 2019. Are Red Roses
Red? Evaluating Consistency of Question-Answering Models. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Florence, Italy, 6174-6184. https://doi.org/10.
18653/v1/P19-1621

Marco Tulio Ribeiro and Scott Lundberg. 2022. Adaptive Testing and Debugging
of NLP Models. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Dublin, Ireland, 3253-3267. https://doi.org/10.18653/v1/2022.acl-
long.230

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. 2022. Learning To Retrieve
Prompts for In-Context Learning. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics, Seattle, United
States, 2655-2671. https://doi.org/10.18653/v1/2022.naacl-main.191

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. 2019.
Distributionally robust neural networks for group shifts: On the importance
of regularization for worst-case generalization. ArXiv preprint abs/1911.08731
(2019). https://arxiv.org/abs/1911.08731

Ozan Sener and Silvio Savarese. 2018. Active Learning for Convolutional Neural
Networks: A Core-Set Approach. In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net. https://openreview.net/forum?id=H1aluk-
RW

Burr Settles. 2009. Active Learning Literature Survey. Computer Sciences Technical
Report 1648. University of Wisconsin-Madison.

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. 1992. Query by
committee. In Proceedings of the fifth annual workshop on Computational learning
theory. 287-294.

Patrice Simard, David Chickering, Aparna Lakshmiratan, Denis Charles, Léon
Bottou, Carlos Garcia Jurado Suarez, David Grangier, Saleema Amershi, Johan
Verwey, and Jina Suh. 2014. Ice: enabling non-experts to build models interactively
for large-scale lopsided problems. arXiv preprint arXiv:1409.4814 (2014).
Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen Wong, Margaret Burnett,
Thomas Dietterich, Erin Sullivan, and Jonathan Herlocker. 2009. Interacting
meaningfully with machine learning systems: Three experiments. International
Jjournal of human-computer studies 67, 8 (2009), 639-662.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui
Zhang, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, et al. 2022. Selective
annotation makes language models better few-shot learners. ArXiv preprint
abs/2209.01975 (2022). https://arxiv.org/abs/2209.01975

[55

o
2

[57

[58

[59

[60

[61

[62

o
=

[64

[65

=
2

[67

(68

=
20,

Tongshuang Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, and Marco Tulio Ribeiro

[54] Ben Swanson, Kory Mathewson, Ben Pietrzak, Sherol Chen, and Monica Di-

nalescu. 2021. Story Centaur: Large Language Model Few Shot Learning as
a Creative Writing Tool. In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics: System Demon-
strations. Association for Computational Linguistics, Online, 244-256. https:
//doi.org/10.18653/v1/2021.eacl-demos.29

Jeniya Tabassum, Alan Ritter, and Wei Xu. 2016. TweeTime : A Minimally
Supervised Method for Recognizing and Normalizing Time Expressions in Twitter.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, Austin, Texas, 307-318.
https://doi.org/10.18653/v1/D16-1030

Alex Tamkin, Dat Nguyen, Salil Deshpande, Jesse Mu, and Noah Goodman. 2022.
Active Learning Helps Pretrained Models Learn the Intended Task. ArXiv preprint
abs/2204.08491 (2022). https://arxiv.org/abs/2204.08491

Toan Tran, Thanh-Toan Do, Ian D. Reid, and Gustavo Carneiro. 2019. Bayesian
Generative Active Deep Learning. In Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, 6295-6304. http://proceedings.mlr.press/
v97/tran19a.html

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998-6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa- Abstract.html

Vijay V Vazirani. 2013. Approximation algorithms. Springer Science & Business
Media.

Gust Verbruggen, Vu Le, and Sumit Gulwani. 2021. Semantic programming
by example with pre-trained models. Proceedings of the ACM on Programming
Languages 5, OOPSLA (2021), 1-25.

Shuohang Wang, Yang Liu, Yichong Xu, Chenguang Zhu, and Michael Zeng.
2021. Want To Reduce Labeling Cost? GPT-3 Can Help. In Findings of the
Association for Computational Linguistics: EMNLP 2021. Association for Com-
putational Linguistics, Punta Cana, Dominican Republic, 4195-4205. https:
//doi.org/10.18653/v1/2021.findings-emnlp.354

Yunlong Wang, Priyadarshini Venkatesh, and Brian Y Lim. 2022. Interpretable
Directed Diversity: Leveraging Model Explanations for Iterative Crowd Ideation.
In CHI Conference on Human Factors in Computing Systems. 1-28.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. ArXiv preprint abs/2201.11903 (2022). https://arxiv.org/abs/
2201.11903

Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J Cai. 2022. Promptchainer: Chaining large language
model prompts through visual programming. In CHI Conference on Human Factors
in Computing Systems Extended Abstracts. 1-10.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. 2019.
Errudite: Scalable, Reproducible, and Testable Error Analysis. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Florence, Italy, 747-763. https:
//doi.org/10.18653/v1/P19-1073

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. 2021.
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving
Models. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for Computational Linguistics,
Online, 6707-6723. https://doi.org/10.18653/v1/2021.acl-long.523

Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (New Orleans, LA, USA) (CHI "22). Association for Computing Machinery,
New York, NY, USA, Article 385, 22 pages. https://doi.org/10.1145/3491102.
3517582

Tongshuang Wu, Daniel S Weld, and Jeffrey Heer. 2019. Local decision pitfalls in
interactive machine learning: An investigation into feature selection in sentiment
analysis. ACM Transactions on Computer-Human Interaction (TOCHI) 26, 4 (2019),
1-27.

Tongshuang Wu, Kanit Wongsuphasawat, Donghao Ren, Kayur Patel, and Chris
DuBois. 2020. Tempura: Query Analysis with Structural Templates. In CHI °20:
CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA,
April 25-30, 2020, Regina Bernhaupt, Florian 'Floyd’ Mueller, David Verweij, Josh
Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino, Alix Goguey,
Pernille Bjon, Shengdong Zhao, Briane Paul Samson, and Rafal Kocielnik (Eds.).
ACM, 1-12. https://doi.org/10.1145/3313831.3376451

https://arxiv.org/abs/2202.12837
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://arxiv.org/abs/2208.04024
https://arxiv.org/abs/1811.03897
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/P19-1621
https://doi.org/10.18653/v1/P19-1621
https://doi.org/10.18653/v1/2022.acl-long.230
https://doi.org/10.18653/v1/2022.acl-long.230
https://doi.org/10.18653/v1/2022.naacl-main.191
https://arxiv.org/abs/1911.08731
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://arxiv.org/abs/2209.01975
https://doi.org/10.18653/v1/2021.eacl-demos.29
https://doi.org/10.18653/v1/2021.eacl-demos.29
https://doi.org/10.18653/v1/D16-1030
https://arxiv.org/abs/2204.08491
http://proceedings.mlr.press/v97/tran19a.html
http://proceedings.mlr.press/v97/tran19a.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://doi.org/10.18653/v1/2021.findings-emnlp.354
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3313831.3376451

Interactive In-context Example Annotation for Text Transformation

[70] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2021. An
explanation of in-context learning as implicit bayesian inference. ArXiv preprint
abs/2111.02080 (2021). https://arxiv.org/abs/2111.02080

[71] Zhilin Yang, Saizheng Zhang, Jack Urbanek, Will Feng, Alexander H. Miller,
Arthur Szlam, Douwe Kiela, and Jason Weston. 2018. Mastering the Dungeon:
Grounded Language Learning by Mechanical Turker Descent. In 6th International

[72

U123, 2022, Sydney,Australia

Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.
net/forum?id=SJ-C6JbRW

Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glassman. 2020.
Interactive Program Synthesis by Augmented Examples. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology. 627-648.

https://arxiv.org/abs/2111.02080
https://openreview.net/forum?id=SJ-C6JbRW
https://openreview.net/forum?id=SJ-C6JbRW

	Abstract
	1 Introduction
	2 The Design of ScatterShot
	2.1 Interactive Interface
	2.2 Slice-based Sampling

	3 Simulation Experiment: ScatterShot Sampling vs. Random Sampling
	3.1 Tasks and Datasets
	3.2 Procedure and Baseline
	3.3 Results

	4 User Study
	4.1 Study Design
	4.2 Results

	5 Discussion
	6 Related Work
	6.1 LLMs and In-context Learning
	6.2 Effective Example Selection
	6.3 Model-assisted Annotation

	7 Conclusion
	Acknowledgments
	References

