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Figure 1: VegaProf records low-level execution times and encodes them in coordinated visualizations corresponding to different
abstraction levels of Vega’s DSL execution. (1) An icicle graph provides an overview of where most time is spent. (2) Unlike
previous debugging approaches, which relied on trial-and-error-based changes of the visualization specification, VegaProf
maps performance measures directly to the Vega specification. (3) To help analyze performance on different levels, VegaProf
augments the dataflow graph with performance measures.

ABSTRACT
Domain-specific languages (DSLs) for visualization aim to facili-
tate visualization creation by providing abstractions that offload
implementation and execution details from users to the system
layer. Therefore, DSLs often execute user-defined specifications
by transforming them into intermediate representations (IRs) in
successive lowering operations.

However, DSL-specified visualizations can be difficult to pro-
file and, hence, optimize due to the layered abstractions. To better
understand visualization profiling workflows and challenges, we
conduct formative interviews with visualization engineers who
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use Vega in production. Vega is a popular visualization DSL that
transforms specifications into dataflow graphs, which are then exe-
cuted to render visualization primitives. Our formative interviews
reveal that current developer tools are ill-suited for visualization
profiling since they are disconnected from the semantics of Vega’s
specification and its IRs at runtime.

To address this gap, we introduce VegaProf, the first performance
profiler for Vega visualizations. VegaProf instruments the Vega li-
brary by associating a declarative specification with its compilation
and execution. Integrated into a Vega code playground, VegaProf
coordinates visual performance inspection at three abstraction lev-
els: function, dataflow graph, and visualization specification. We
evaluate VegaProf through use cases and feedback from visualiza-
tion engineers as well as original developers of the Vega library. Our
results suggest that VegaProf makes visualization profiling more
tractable and actionable by enabling users to interactively probe
time performance across layered abstractions of Vega. Furthermore,
we distill recommendations from our findings and advocate for
co-designing visualization DSLs together with their introspection
tools.
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1 INTRODUCTION
Domain-specific languages (DSLs) such as Vega [28] and gglpot2 [30]
enable both end-users and system developers [20] to rapidly ex-
plore the visualization design space using abstractions that simplify
coding and defer low-level control flow to the system layer [24].
For example, Vega can parse a visualization specification written in
JSON, where the underlying schema is informed by the grammar
of graphics [31], into a dataflow graph abstracting the required
computations and their dependencies; the resulting dataflow graph
is then used to execute low-level visualization operations, includ-
ing rendering functions. This successive creation of intermediate
representations (IRs) to compile and execute DSL code is called the
lowering process [3].

However, what makes DSLs useful (e.g., abstracting away imple-
mentation and execution details) can also make them challenging
to understand [22] and debug [13, 15]. Users of visualization DSLs
have limited visibility to code execution [13]. Nevertheless, they
still need to ensure that their visualizations are responsive and scal-
able. Visualizations include many elements affecting performance,
including layout, encoding, data transformation, and rendering.
Due to the intricate dependency between these elements and ever-
increasing data sizes, users may spend considerable iterative effort
on performance optimizations, which makes profiling and intro-
spection of visualization specifications challenging without ade-
quate tools. On the other hand, browser profilers cannot provide
a multi-level performance trace [18] as they don’t have access to
mappings between IRs of a visualization DSL. As general profilers
for web applications, they are inadequate for DSLs, which require
affordances to reason about lower-level abstractions in terms of
higher-level ones. For example, users might know which render-
ing function slows down a visualization, but this might not help
them to locate relevant parts in the DSL or its resulting dataflow
graph. As a result, to address performance problems, practitioners
often rely on trial-and-error procedures, which can be error-prone,
time-consuming, and taxing.

In response, we introduce VegaProf (Figure 1) to enable easy
and effective time-performance profiling for Vega visualizations.
VegaProf instruments the Vega library to record low-level execution
times and encodes and annotates them in coordinated visualizations
corresponding to different abstraction levels of Vega execution. Veg-
aProf enables users to trace performance from the code segments of
a visualization specification to the dataflow graph and the executed
functions and back through interactive visual inspection within a
familiar developer tool, the Vega Editor.

VegaProf is the first performance profiler for a visualization
DSL, which contributes to tooling for visualization development

and has synergistic connections to broader systems research [3]
and dataflow DSLs. Although implemented in the context of Vega,
the presented techniques generalize to other DSLs that instantiate
dataflow systems. For example, DBMSs optimize SQL queries and
generate dataflow graphs of operators for execution.

While the architecture of VegaProf, connecting layers of abstrac-
tions, is similar to prior interactive systems at a high level, its design
contributions lie in anchoring the design explicitly on a DSL’s hier-
archical IRs and bidirectionally coupling them via visual interaction.
This combination offers an effective (semantically direct [17]) and
conceptually straightforward recipe for designing future interactive
introspection tools for DSLs with rich design variations possible.
Scalability remains a crucial problem for data visualization in prac-
tice, particularly in cloud data analytics. Thus, future DSLs will
need to incorporate constructs for optimizations. Therefore, perfor-
mance profilers for visualization DSLs will be even more critical in
the future, for which VegaProf sets the stage.

We inform the design of VegaProf with a formative study in-
volving three visualization engineers. We subsequently evaluate
its value and usability for users through three use cases and a
summative study with five visualization engineers and two of the
original Vega developers. Both studies are conducted with par-
ticipants who have real stakes in performance, providing added
support for the validity of the results. Our findings demonstrate the
utility and usability of VegaProf and our profiling framework, rein-
force the effectiveness of encoding performance measurements in
an overview visualization (an icicle graph) linked to the underlying
visualization specification, and establish that different abstractions
appeal to different user groups. We release VegaProf on GitHub
(https://github.com/cagataydemiralp/vegaprof) as open-source soft-
ware to support future research and applications.

2 RELATEDWORK
VegaProf builds upon prior research on visualization debugging
and dataflow system profiling.

2.1 Debugging Visualizations
Data visualization research has a long history of investigating DSLs
for visualization specification (e.g., [4, 12, 23, 29, 31, 32]), but re-
search into linting and debugging visualizations is nascent. McNutt
and Kindlmann [19] introduce a visualization linter that checks a
predefined set of rules on a given visualization and returns a list
of failed rules with explanations; this postprocessing approach is
disconnected from the development workflow and does not localize
errors for rendered visualizations in their specifications. In contrast,
VisuaLint [16] annotates visualizations in situ with red marks; these
marks, akin to conventional linting-error visualizations in IDEs,
cannot be traced back to the visualization specification. To rectify
defective visualization designs, VizLinter [5] highlights flaws di-
rectly in the visualization specification: it maps flaws to DSL code
while suggesting potential fixes. Since interactions can be particu-
larly challenging to debug, Hoffswell et al. [14] propose debugging
techniques designed for reactive visualizations; to provide needed
detail to the visualization engineer, they track state through inter-
actions that are mapped to a visual debugging interface. However,
they use signal names to map problems to the Vega specification,
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so their technique works only to debug interactions and is thus not
generally applicable.

This prior work focuses on errors in the visualization specifica-
tion rather than performance problems. It thus targets a different
problem space than VegaProf, which enables interactive time per-
formance profiling.

2.2 Profiling Dataflow Systems
Vega is a form of dataflow system [27]. Bidirectional coupling of
the visualization specification (code) with its associated dataflow
graph and rendering functions is central to interactive profiling
in VegaProf. Dataflow graphs are a common abstraction used by
myriad tools across domains beyond data visualization (e.g., Py-
Torch, TensorFlow, Spark, Flink, Naiad, SQL). Earlier work presents
profiling tools to help discover performance issues in dataflow
systems [10]. For example, Perfopticon [21] shows the runtime
distribution of individual query operators and per-worker execu-
tion traces; like our approach, it also maps the profiling result to
user input and leverages the importance of connecting high-level
abstractions with execution in profiling. Battle et al. disentangle
SQL queries as a series of intermediate queries to help developers
debug the behavior of their queries in StreamTrace [2]. Similarly,
Grust et al. [11] link intermediate query results to the SQL code that
generated them instead of using representative visualizations. Map-
ping performance directly to code has been a common paradigm
in recent research [6]. However, none of the earlier approaches
target visualization DSLs or consider dataflow graphs as a profiling
entity. Beischl et al. [3] propose a multi-level performance profil-
ing technique specifically for dataflow-based systems. We adopt
a similar approach for developing an interactive profiler for Vega,
building our primary visualizations on different IRs of Vega and
their interactive coordination through brushing and linking. Veg-
aProf complements this work [3] by leveraging the bidirectional
maps between DSL IRs to improve visual interactive profiling.

3 FORMATIVE INTERVIEWS
Our work was initially motivated by our efforts to help developers
improve visualization performance in an interactive data analytics
product [9].

To assess the needs of visualization developers, we interviewed
three professional visualization engineers for whom the program-
matic generation of Vega visualizations is part of their daily work.
Though our interviewees all worked with Vega specifications on a
daily basis, they had varying levels of Vega expertise. P1 and P2 re-
garded Vega as the configuration mechanism for visualizations but
had less knowledge of the underlying execution; in contrast, P3 had
a basic understanding of Vega internals, such as how a specification
instantiates its underlying dataflow graph.

We conducted and recorded our semi-structured interviews via
online video conferencing software. We covered a list of prede-
fined topics and questions, leaving time for open discussion. Topics
discussed included their performance optimization needs, current
practice and tools, and desired performance profiling features, and
we present our findings for each topic below.

Performance optimization. We discovered that performance
issues “usually have large impacts” (P1) because interviewees’ cus-
tomers get frustrated with slow system responsiveness. However,
interviewees acknowledged that they do not proactively monitor
or conduct regular testing for performance but deal reactively with
performance issues after customers report them. They attributed
this to the fact that performance issues are currently difficult to
localize, debug, and fix. Indeed, interviewees underlined that “per-
formance issues are often neglected” (P2) and “once we find the causes,
we often tell customers not to perform such operations” (P1). Further-
more, visualization engineers typically “limit the data input to a
Vega spec to less than 25k [data points] to prevent a lot of slow ren-
dering issues” (P3). Moving forward, these stopgap solutions are
not sustainable since interviewees “have seen a lot of questions and
requests regarding visualization performance” (P1).
Current practice and tools. To reason about poor performance,
visualization engineers typically “have Zoom meetings with cus-
tomers to talk about problematic visualizations” (P1). Then, they
often “simulate the configurations” (P1 and P3) and test them in a
sandbox environment. As such, they lack specialized tooling for
performance debugging, instead relying on “the Vega Editor in com-
bination with Chrome’s devtools” (All participants). However, the
problem with this is that “devtools can only tell you that the issues
are caused by Vega function calls, but it can’t help with locating them
inside the specification” (P1). Interviewees therefore often relied on
their previous experience and had no tooling support to test their
hypotheses.
Desired features. When asked about what features could help
overcome their problems, interviewees asked for a “breakdown of
the transforms, mark rendering, etc., that can immediately indicate
which lines [in the DSL] caused the issue” (P3).

3.1 Design Goals
Based on our interview observations and our broader conversa-
tions with visualization practitioners, we distilled the following
requirements for a Vega performance profiler:
Bidirectional timing mapping. To help visualization engineers
discover the root cause of performance bottlenecks, it is not suffi-
cient simply to measure function execution times. Instead, to make
informed decisions for performance optimization, practitioners
must understand how different parts of their code specification
incur performance costs and how they are grounded in Vega’s IRs,
including the associated dataflow graph and function calls.
Multi-level profiling insights. Given a bidirectional mapping
of timings of the DSL’s IRs, practitioners must be able to investi-
gate mapping results. Interactive visualizations that surface timing
measurements can facilitate such introspection, enabling practi-
tioners to trace and contextualize performance measurements in
situ through the IRs used in Vega’s lowering pipeline. Users can
target different abstraction levels depending on their expertise and
the nature of their work.
Familiar development environment. We aim to support visual-
ization engineers in a familiar environment, aligning the profiler
with their existing workflows and making it approachable. As with
most software users, visualization engineers adopt new tools only
if the burden of entry does not outweigh their benefits. Therefore,
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Figure 2: During the lowering process, the user-defined DSL
specification is parsed into a computation graph and then
into functions to be evaluated. We add annotations during
the lowering process and then trace profiling results back to
higher levels of abstraction.

we chose to integrate the profiler into the Vega Editor [7], which is
widely used by practitioners, reducing the friction for adoption.

4 VISUALIZATION PROFILING
To bridge the gap between visualization specification and low-level
execution, we implement a bidirectional profiling map that tracks
the association between higher and lower abstraction levels as
they undergo code generation and compilation. Then, we visually
represent the collected information and integrate it as coordinated
views in the Vega Editor.

4.1 Bidirectional Profiling Map
The recording of function execution times is well-established for
time-profiling. However, effective profiling instruments for a visu-
alization DSL rely on a bidirectional mapping of execution time
measurements and DSL segments with semantic meanings. Only
with a mapping as shown in Figure 2 can visualization engineers an-
alyze performance bottlenecks in the context of the IRs that result
from DSL transformations.

To realize such a mapping, we annotate the nodes of the dataflow
graph description as they are created when parsing the visualization
specification. Specifically, since a Vega specification is a nested
JSON object, we store (1) the path of keys to access a specification
component as the key in our map and (2) the list of nodes instanti-
ated by it during the lowering process as the value. This way, we
can reverse this mapping, associating dataflow graph nodes with
corresponding lines of DSL code.

Once the dataflow graph description is transformed into a dataflow
runtime, where the nodes represent functions to be evaluated, we
further annotate these functions with the respective dataflow graph

nodes to realize such a mapping for this second lowering process.
Our measurements of function execution time can therefore be
mapped back to the node of the dataflow graph that triggered the
execution. By chaining the annotations from the two phases, we
can assign the execution of individual functions not only to nodes
in the dataflow graph but also to lines and blocks of DSL code. Using
this bidirectional mapping, execution times can be traced from the
function level back to the highest level of operation, namely the
DSL specification for the visualization.

This approach directly addresses our first design goal of creating
a bidirectional map between Vega’s IRs. While we use this inter-IR
indexing approach only to improve profiling instruments, it could
also be helpful for other introspection tools, such as learning about
Vega’s lowering process or dataflow debugging. Furthermore, our
approach could be expanded to other libraries in the Vega ecosystem.
For example, Vega-Lite specifications compile to Vega, which could
be viewed as one more level of abstraction in our method. In theory,
this bidirectional profiling map can be visualized and analyzed in
any environment.

Our addition to the Vega source code is minimal and lightweight.
The main implementation effort went into integrating the profiling
results as coordinated views into the Vega Editor, which we describe
next.

4.2 Visual Performance Inspection
Based on the information obtained from the bidirectional mapping
of profiling results, we provide a visual interface that lets visu-
alization engineers take action to improve performance of their
visualization designs. We implemented this interactive performance
profiling interface as an extension to the Vega Editor to provide an
environment familiar to visualization engineers. The Vega Editor, a
well-established visualization development tool used by many Vega
users, is implemented as a live playground that runs in the browser
using the Monaco Editor that powers Visual Studio Code for speci-
fication input. Our profiling map is updated whenever users modify
their specification. In this way, the Vega Editor provides bidirec-
tional performance tracing with links across DSL line numbers,
specification blocks, dataflow nodes, and function execution times
We use React [8] and Redux [1] for VegaProf’s interface in the Vega
Editor; for its visualizations, we use D3 [4] and Cytoscape.js [26].

A new performance tab provides a performance icicle graph
(Figure 3 (B)) and augments the dataflow graph (Figure 3 (C)) and
the DSL specification editor (Figure 3 (A)). These three components
are connected through brushing and linking techniques using our
bidirectional profiling map (Section 4.1) as the underlying data
source. We thus map selections, mouseover events, and zoom tran-
sitions that occur in one of the three views to the other two. Such
interactions are indicated using blue highlights; hovered over items
are assigned a semi-transparent blue highlight, and selected items
are highlighted in full blue consistently across all visualizations.

In addition to these main views, the Vega Editor further displays
the visualization that results from the provided specification. If
the visualization is interactive, the resulting profiling and operator
states from interaction events are recorded as multiple pulses. The
first pulse marks the initial rendering of the visualization, and
subsequent ones are added whenever the visualization is updated
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A - DSL Specification Editor

B - Performance Icicle Graph

C - Dataflow View

Figure 3: VegaProf’s visual inspection functionalities are implemented in a familiar development environment—the Vega Editor.
(A) We highlight the selected regions of DSL code when inspecting performance bottlenecks. (B) An icicle graph depicts the
measurement of rendering function execution time. (C) We highlight the nodes contributing to selected timing measurements
in the Vega-generated dataflow graph. Note how hovering over the icicle graph highlights the corresponding elements in the
dataflow graph and DSL editor.

based on user interaction. Pulses are selected from the pulse table,
and the icicle and dataflow graphs are updated to show only the
operators being re-evaluated and their timings. In addition, pulses
augment the dataflow graph via node tooltips by providing insights
into data changes in the individual nodes along every pulse. By
default, we show profiling results for the initial rendering pulse
for both static and interactive charts; in so doing, visualization
engineers can use our visualizations and profiling results not only to
debug the initial rendering process but also to improve interaction
performance. Directly above the pulse selection, we prominently
show the total runtime of the selected pulse so users have an anchor
to put all visual interface timings into context.

4.2.1 DSL Specification Editor. The DSL specification editor is
prominently positioned at the left edge of the Vega Editor (cf. Fig-
ure 3 (A)), marking a natural entry point for debugging. It represents
the highest level of abstraction for VegaProf, directly connecting
performance profiles to the DSL code that defines the visualization.
Since this level can be directly influenced by visualization engineers,
it is often where their time-performance analysis begins.

To map function execution times to blocks of the DSL specifi-
cation, we consider different levels of ranges in the specification.
These blocks directly map to JSON’s hierarchical object structure in
the Vega specification. For example, a user would specify both the
x-axis and y-axis blocks under the axis block. In Vega, these blocks

are the units that visualization engineers would associate with vi-
sual components. Hence, this is the level at which they would make
edits, e.g., changing the type of mark used for rendering or how
data is mapped to these marks. As such, this way of clustering parts
of the DSL naturally aligns with how Vega users understand and
modify the specifications.

Hovering over one of these blocks of DSL code highlights the
respective specification segment. This gives visualization engineers
insight into how much time individual blocks of the visualization
specification require during rendering. Clicking on such a high-
lighted code block selects it for further inspection. As noted ear-
lier, highlights and selections are transferred to the corresponding
elements in the dataflow and performance icicle graphs. More im-
portantly, we also implemented the reverse linking directions from
the icicle and dataflow graphs. For example, investigating elements
that require significant rendering time in the icicle graph scrolls
users to the corresponding code segment of the DSL and highlights
it. As a result, one can easily interpret the high-level responsibility
of a particular element of the icicle chart and the dataflow graph
by inspecting the highlighted block in the specification.

This connection makes such performance measures insightful
and actionable since visualization engineers can directly adjust
relevant parts of the DSL code.
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Figure 4: We use a scatter plot with binned aggregation as an example during our evaluation. The rendering time is about 600
ms initially. The individual point marks do not add substantial value to the visualization while obstructing the heatmap. Thus,
removing them does not undermine the message the visualization aims to communicate and reduces the mark rendering time
almost to zero. Furthermore, the data transformation is specified suboptimally, requiring Vega to copy the data. Restructuring
the data transformation further saves about 200 ms without changing the visualization.

4.2.2 Dataflow View. As the first IR of the Vega visualization gram-
mar, the DSL specification the visualization engineer provides is
transformed into a dataflow graph. In the dataflow view, our visual
performance inspection interface enables analysis at a more de-
tailed level. This view (Figure 3 (C)) contains a visualization of the
parsed dataflow graph that results from Vega’s DSL transformation.
It can be color-coded by node type or, more conveniently for per-
formance analysis, by node runtime. We use D3’s interpolateReds
color scale to encode node runtime since red is often used as an
alarm color, drawing attention to the most expensive nodes during
rendering.

Whenever a node is selected from this graph visualization, the
dataflow graph gets transformed to show only the subgraph with
connections to the selected node based on dependency. A zoom-in
animation further highlights selected nodes. If a selection comes
from any other visualization, such as the DSL editor or the perfor-
mance icicle graph, we analyze the nodes involved in the selected
subset of performance analysis elements and employ filtering and
zooming similar to that used for direct node selection. This inter-
action concept further embraces the combined analysis of Vega’s
different IRs, similar to how interaction with the DSL specification
editor is mapped to all other visualizations.

To directly identify the most time-consuming nodes, VegaProf
further includes a table of all nodes positioned next to the dataflow
graph. This table, based on the dataflow graph, is ordered by node
execution time, placing the most performance-intensive nodes at
the top. This tabular visualization can thus be used as an entry-point
of the analysis on the dataflow level since it guides the visualization
engineer’s attention directly to nodes of interest.

4.2.3 Performance Icicle Graph. Positioned directly above the dataflow
graph, the performance icicle graph (cf. Figure 3 (B)) functions as
an intermediate representation between the dataflow graph and the
DSL specification editor. It is defined by its different levels of ag-
gregation, from coarse performance elements to more fine-grained
ones. To symbolize this aggregation structure, we color coarser lev-
els in gray and light blue and fine-grained levels in dark blue. The

most detailed level in this icicle graph directly represents nodes of
the dataflow graph; however, the icicle graph also visualizes the hi-
erarchical structure of the Vega DSL at its higher levels, connecting
the two other views in one visualization.

Hovering over and selecting elements in the icicle graph works
the same as it does in our other visualizations. The icicle graph
additionally zooms into selected elements to provide more detailed
information about a selection. Like the dataflow graph, this zooming
and highlighting might also be triggered by events from other
visualizations. In sum, the icicle graph, with its different levels of
performance aggregation and linked interaction concepts, serves
as a bridge between the specification editor and the dataflow view.

5 USE-CASES
This section describes how VegaProf can help visualization engi-
neers discover and resolve performance problems of their Vega
visualizations through three example use-cases. These cases high-
light how connecting different IRs can help to debug performance
and, specifically, how directly linking performance bottlenecks to
Vega’s specification makes such analyses actionable.

5.1 Visualization Design Decisions
Mary is a visualization engineer in the data analysis team of a large
airline. She wants to analyze the effect of flight distance on the
delay of flights based on a dataset that contains information on
three million flights. She considers a scatter plot to visualize the
data. When she specifies the scatter plot in Vega, she notices that
the visualization she has created is too slow to be usable.

With VegaProf, Mary loads her data and visualization specifi-
cation into the Vega Editor and analyzes the performance of her
visualization. Through an investigation of the icicle Graph, she im-
mediately notices that mark rendering consumes most of the total
visualization generation time. Looking at the connected location in
the visualization specification, she notices that rendering individual
scatter marks for millions of flights is too slow to sustain interac-
tivity. Since Mary is seeking general trends rather than individual
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flight information, she decides to remove these marks and instead
render a heatmap for binned results. VegaProf helps users make
design decisions by illustrating tradeoffs between performance and
visualization design.

Next, Mary notices that loading the data was relatively slow.
Using the dataflow graph, she locates an operation that copies part
of the data during the transformation stage. Since the relevant
part of the Vega specification is highlighted when she hovers over
the corresponding dataflow node, she identifies the problem and
modifies the transformation code to make data processing more
performant.

After these modifications, Mary further notices that while much
faster than before, data processing remains her chief performance
bottleneck. The final step she could take is to pre-aggregate data
instead of binning it on demand. However, since the data frequently
changes, she decides against this approach and accepts the initial
loading time because of the data transformation that makes her
specification more portable.

5.2 Offloading Expensive Operations
Alice works as a visualization engineer for a software company.
Her team implements product features for UI-based visualization
authoring. Their product lets users without programming exper-
tise create various visualizations to explore data in a cloud data
warehouse (CDW). They use Vega as the underlying technology to
specify visualizations through their product’s UI.

By default, Vega requires all data to be loaded and processed in
the client’s browser. However, it is computationally impossible to
query the CDW for the raw data and transfer it to the browser’s
memory for processing in Vega. Therefore, Alice decides to pre-
process the data with SQL queries upon request from the visualiza-
tion so that the query result is ready to be directly mapped to visual
channels without further Vega transforms. However, her testing
visualization is not sufficiently fast in its initial rendering and does
not seamlessly respond to user interactions.

When Alice inspects VegaProf’s pulses and dataflow nodes af-
fected by the pulses, she sees that each interaction triggers a request
to the CDW, blocking the entire dataflow graph. After analyzing
the requests, Alice notices that intermediate results can be cached
to reduce the interaction latency. She rewrites the query to fetch
those results only once and moves the downstream transformations
into the Vega specification. As a result, time-consuming computa-
tions are offloaded to the backend while operations with interactive
latency are executed in the browser.

5.3 High-Performance Tool Development
Amy is developing VegaPlus [33], a system to automatically offload
computationally expensive Vega operations for large-scale data.
Given a Vega specification, VegaPlus partitions data operations
between the server and client. Amy uses VegaProf to help her with
different development tasks, as shown in Figure 5.

To optimize Vega’s execution, she needs to understand how Vega
instantiates the dataflow graph. Without VegaProf, she had to log
the dataflow object, go through the nested structure in a browser
console, and meticulously inspect each level. Therefore, locating
the dataflow graph section she needs to inspect required substantial

work. With VegaProf, Amy uses the visual exploration interface
to inspect the holistic dataflow graph structure and variables in-
side each node. This helps her rapidly locate nodes of interest and
complements the previous manual inspection method.

VegaPlus automatically rewrites operations as SQL queries. At
runtime, interaction signals pass the parameters to query builders
to generate executable queries. Amy selects a pulse from VegaProf’s
pulse table and hovers over the transform node to check the queries
sent to the DBMS and their results. Therefore, she need not manu-
ally monitor and log interaction information.

Finally, VegaProf helps Amy profile and visualize the perfor-
mance of VegaPlus in detail before running benchmarks. An ex-
ecution plan that performs well for initial rendering may suffer
from significant interaction latency. Since users are often more
tolerant of slower initial rendering if it benefits faster interactions,
Amy wants VegaPlus to optimize for interaction performance. To
prototype various execution plans, Amy uses VegaProf to simulate
interactions and then analyzes the different execution plans with
the help of VegaProf’s performance chart and pulse table.

6 INTERVIEW STUDY
To further evaluate VegaProf, we conducted a qualitative user study
with five visualization engineers at Sigma Computing and two Vega
developers who work on its toolkit. In the following, we provide
details on the setup of our study, including our participant pool and
the procedure and data used.
Participants.We selected five visualization engineers who develop
visualizations for hundreds of analysts across different companies;
their visualizations must be scalable and perform well.They work
with Vega on a daily basis, although they had different levels of
background knowledge of the system’s internal dataflow; as such,
they are representative of VegaProf’s target audience. The two Vega
developers we interviewed develop and maintain the Vega toolkit.
They are experts with the Vega internals.
Procedure. To identify the benefits and limitations of VegaProf,
we held a 30-minute think-aloud session with each participant
individually. We first gave a quick tutorial of VegaProf during these
sessions before participants experimented with the profiler. For
these experiments, our participants were given 20 minutes to access
VegaProf with a visualization specification preloaded. They were
asked to explore the profiler based on two guiding questions: How
could you adjust the specification for faster rendering? How can the
data processing be improved? We then encouraged them to share a
specification from their recent work and show us how they would
use VegaProf to inspect it. Finally, we asked our study participants
to rate different aspects of VegaProf on a five-point Likert scale via
an online questionnaire.
Data and specification. The specification we used for this eval-
uation renders a scatter plot overlaid on a binned heatmap (cf.
Figure 4), as described in Section 5.1. Input data to the visualization
consists of three million rows, each rendering one data point. While
a user interacts with the chart by panning and zooming actions, the
dataflow graph re-calculates the bins and aggregated values. We
selected this specification since rendering or constantly aggregating
a large number of data points is prone to performance issues.
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Vega Spec VegaProfVegaPlus
Vega Visualization{ }

Figure 5: Amy transforms a raw Vega specification using VegaPlus to distribute computation across the backend and frontend.
She inspects the resulting performance profile in VegaProf to identify bottlenecks in her implementation. She uses the dataflow
graph along with its associated tooltip, the icicle graph, and the total rendering time to gain performance insights about
the execution plan generated by VegaPlus. Then, she interactively changes her implementation of VegaPlus to improve
performance.

7 RESULTS
We now present the main findings of our evaluation and discuss
their implications.

7.1 Visualization Engineers
We first report on the qualitative feedback elicited from our sessions
with five visualization engineers.

With the help of the icicle graph, all participants identified point
marks as the most time-consuming components. They located the
relevant part in the specification by hovering on the icicle graph,
which they found helpful: “It is impressive that you can highlight the
spec [from the icicle chart].” (P3). Based on the highlighted region in
the specification, all participants recognized that a scatter plotmight
not be ideal, both visually and computationally, and removed it.
The visual connection between performance measures and relevant
parts of the visualization specification through highlighting was
one of the most well-received features of VegaProf. It was seen as a
substantial improvement over the current way of debugging slow
specifications, which is to “just guess which part is the cause and
modify it to see if it solves the issue or not” (P1). One participant
stressed the importance of the icicle graph to their workflow, since
without VegaProf “we could separate the data transform out and
profile it programmatically, but there was no way to do that for
everything else, [including] the marks, the rendering, etc.” (P5).

As participants inspected the resulting performance after this
first edit, they discovered that the runtime for rendering the marks
was significantly reduced. Subsequently, they recognized that, with
the modified specification, the most time-consuming operations
were the transformations used to process the data. Participants were
able to select the relevant dataflow nodes responsible for the perfor-
mance bottleneck. However, most of them lacked the background
knowledge about how nodes are instantiated from the specification
through parsing and compilation. Specifically, they were not able
to infer from the node name relay that an unnecessary data copy
operation caused the performance bottleneck. P5 managed to solve
the task by removing unnecessary operations, although doing so
required a hint from us: “Now that you told me a transform in the
spec can be expanded to multiple operations, I can see it in the icicle
chart, and everything makes sense to me” (P5). P1 and P2 could not

find a solution that addressed this performance bottleneck. After
we explained how to reconstruct the data transformation pipeline,
they acknowledged that knowing Vega internals and inspecting the
dataflow graph would help optimize specification authoring: “I’m
surprised that doing this can save so much [execution] time!” (P1).

In general, we observed that participants spent most of their
time exploring the icicle graph “because it exactly tells you what
part of rendering is taking up all the time” (P2). From there, they
typically inspected the highlighted segments of the specification.
Participants spent less time inspecting the dataflow graph. Even
those who previously debugged many Vega visualizations with the
dataflow graph initially found the icicle chart more helpful than
the dataflow graph. They intensified their focus on the dataflow
graph only after being reminded of the connection between it and
the icicle graph. In part, this might be because most participants
lacked understanding of node names and “so far have just been
using Vega as a black box [...], assuming that it would work well”
(P2). However, they also mentioned that “the connection between the
spec and dataflow graph, and the structural features [in the dataflow
graph], could be really helpful to understand what goes on behind the
scenes for Vega” (P4).

After the guided exploration, three participants asked to directly
explore specifications they recently worked on in VegaProf. We
observed how they used VegaProf to validate or reject their assump-
tions about a given specification. P2 showed us a scatter plot with
categorical data, admitting initial surprise that “the axes took the
longest to render, and then the marks were comparatively shorter [...]
that’s not what I would have guessed initially” (P2); P2 then realized
that their dataset was relatively small, while the categorical vari-
ables mapped to the axes had a high cardinality. P4 shared with us
a Sankey diagram they had been working on for Sigma Comput-
ing’s product. During development, they frequently inspected the
dataflow graph to understand and debug the connection between
nodes. Concluding that “I’m not surprised that the “linkpath” and
“datajoin” operations took the most time” (P4), they verified that per-
formance conformed with their mental model for such a diagram.
Finally, P5 wanted to explore a visualization automatically gener-
ated from a SigmaWorkbook [9]. They exported the specification of
a simple chart to test their mental model of how it was implemented
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Figure 6: Most participants wanted to use VegaProf for profil-
ing Vega visualizations in their daily work. They also agreed
on the value of all but one VegaProf visualization compo-
nents. Preferred primarily by the two Vega developers, the
dataflow graph visualization receivedmixed feedback, which
would benefit from further investigation. All participants
expressed significant support for the utility of VegaProf func-
tionalities, including tracing performance through a DSL’s
IR and visualizing these traces for performance profiling.

and found that the Dashboard framework implemented it well: “It’s
so fast that the axes take half of the rendering time.” (P5).

7.2 Vega System Developers
The two Vega developers we interviewed are experts in Vega’s
internals. P6 is a maintainer of the Vega repository and designs and
develops software that is built on top of Vega. P7 is one of Vega’s
main designers and developers.

First, both interviewees went through the specification to un-
derstand the example we provided. Each immediately pointed out
the point marks as the culprit. P6 also proposed further options to
improve the visualization design; in addition to removing all point
marks, they tested different data sampling parameters to achieve
a balance between acceptable latency and a representative result.
Like the group of visualization engineers, these more advanced
Vega users found the icicle chart and its linkage to the specification
most efficient for performance debugging: “The icicle graph shows
me what the expensive things are and then seeing that link, it’s nice
to be able to see the part in the spec.” (P6).

Both noticed that the data transformation operations were taking
as much time as the mark rendering. Looking at the icicle graph,
both identified that in the relay transformations, an internal data
copying transformwas the source of the problem. P7 reasoned more
than P6 about whether they should keep the relay: it is slow but
necessary if there are downstream filtering operations because it
copies and caches the data only once, and the effort is amortized
by future interactions. However, by selecting interaction pulses, P7
confirmed that his hypothesis was not the case, and the relay was
indeed redundant; hence, they decided to remove it by rewriting the
specification. They used the dataflow graph “to confirm some things
that I already knew, but without the icicle graph I probably wouldn’t

have, certainly not as quickly, realized that the relay was causing us a
significant hit” (P7). P7 acknowledged that their position as a Vega
developer gave them an advantage and that “I don’t know if other
people would know that” (P7), remarking that the dataflow graph
could serve as more of an expert tool: “I do think this is an expert
level thing where someone has to be very knowledgable about Vega
internals.” (P7).

P6 wondered “whether [...] Vega could be better at” (P6) automati-
cally optimizing the pipeline rather than relying on users to handle
these kinds of optimizations. On the other hand, P7 maintained
that any modification depends on “who the chart is for, and what
are they trying to learn and decide” (P7).

After reviewing the specification we presented, P7 was interested
in exploring a visualization with three histograms connected by
a brushing and linking interaction. They focused on profiling the
interactions by inspecting VegaProf’s pulse table and suggested
providing a better overview and segmentation of the pulses to
increase readability: e.g., “I would like to segment pulses on initiating
event type, running time, and/or recency” (P7).

7.3 Post-Study Questions
All participants, both Vega developers and visualization engineers,
provided feedback on their experience and takeaways from our
interview session on a 5-point Likert scale. The chart displays senti-
ments towards ten questions as percentages, with neutral responses
straddling the 0% mark. The results of this evaluation are shown
in Figure 6.

In general, participants found visualization profilers useful. Fur-
thermore, most of them would like to use VegaProf for their visu-
alization profiling needs, affirming the utility of our profiler im-
plementation. This confirms the findings from our formative inter-
views. Our participants also appreciated howwe coordinated Vega’s
intermediate representations via visual interaction, supporting our
architectural design choices. While they especially appreciated Ve-
gaProf’s linking of different visual elements, they were divided on
the usefulness of interactive pulses. The most controversial of the
visualizations was the dataflow graph; while some found it valuable,
others did not see it as beneficial for their workflows.

7.4 Study Limitations
Our study design was limited by the small number of participants
and their similar background within user groups. In particular, the
visualization engineers at Sigma Computing work primarily on
static charts and were less familiar with the concept of “pulses.”
Thus, they focused more on the initial rendering during the study.
On the other hand, Vega system developers showed more interest in
profiling user interactions. An evaluation with a broader audience
for a longer period of time would likely uncover more insights,
especially with respect to the usage of the pulse table for interactive
visualizations.

8 DISCUSSION AND RECOMMENDATIONS
VegaProf was rated positively by our study participants, confirm-
ing the importance of this work, its architectural design choices,
and most of the visualization decisions. We were intrigued by the
motivation of our participants to try VegaProf on their own Vega
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specifications. Their ability to make immediate sense of its perfor-
mance profiles and view performance measurements in the light
of their DSL code indicates that VegaProf is applicable beyond our
evaluation scope.
Performance tracing. All participants heavily used and com-
mented positively about the connection of performance measures
between Vega’s IRs. Highlighting parts of the specification es-
pecially helped Vega users and developers locate and fix perfor-
mance bottlenecks, establishing that tracing performance measures
through a DSL’s IRs helps improve time-performance profiling.
DSL design. Considering our experience with the internal data
copying operation (i.e., relay) and the feedback of Vega developers,
we believe that visualization DSLs could be further optimized. To
improve both the system developer and end-user experience, we
advocate for jointly designing future visualization DSLs together
with their introspection tools, such as debuggers and profilers.
Furthermore, recommendations for performance improvements
could be included in such tools, similar to related work in the
machine learning domain [25, 34], to help users with profiling.
Profiling tool audience.While the dataflow graph is one of the
main debugging components in the Vega Editor to date, visualiza-
tion engineers found the icicle graph, which we added to VegaProf,
much more helpful. This both underscores the importance of our
icicle graph visualization but also raises questions about the utility
of the dataflow graph. One participant noted that “We use a lot of
the Chrome devtools, and their entire interface is basically only the
icicle chart” (P3), attributing their focused view partly to previous
habits. In addition, one of the Vega developers remarked that the
dataflow graph could be more of an expert tool.

Further research on making dataflow systems more understand-
able, including explanations of individual nodes and meaningful
clustering, might help visualization engineers make better use of
the dataflow graph. Additionally, we deem it essential to consider
the target audience of an introspection tool since different types of
users need different visualizations.

9 FUTUREWORK
While VegaProf is the first profiler for the Vega visualization gram-
mar, we hope that future work can further refine the user experience
with visualization profiling, as outlined below.
Direct visualization connection. Naimipour et al. [22] call for
better support to aid program understanding for visualization DSLs.
With VegaProf, the rendered visualization does not display profiling
information. However, by expanding performance tracking to the
scene graph, components of the resulting visualization could be
linked to VegaProf’s profiling visualizations. By adding this addi-
tional layer to the profiler, a connection between the specification
and the rendered visualization could be established to help further
trace performance issues. This would be valuable both for DSL
understanding and learning.
Profiling dataflow systems. While VegaProf focuses on the Vega
DSL, its underlying approach and visual interaction design could
readily apply to other DSLs. Many DSLs use a similar lowering pro-
cess and dataflow graph as an intermediate representation. Further
generalization of our approach could enable performance profiling

for a wide array of these systems, further broadening the availability
of accessible profiling.
Performance at scale. Our evaluation shows how our approach
improves performance for individual visualizations. However, DSLs
are also frequently used for visualization generation at scale. As a
result, thousands of users could benefit from automatically gener-
ated visualizations, e.g., in web applications under different browser
and cloud configurations. Future research could extend this work
to help visualization engineers profile the distributed performance
of visualizations.

10 CONCLUSION
We introduced VegaProf, an interactive profiler enabling in-depth
analysis of performance bottlenecks in Vega visualizations. We
based its design on formative interviews surfacing the difficulty of
Vega visualization performance debugging. VegaProf replaces inef-
ficient performance debugging practices characterized by trial and
error procedures. It brings visual profiling affordances to Vega’s
IRs by hooking into the lowering process, enabling the display
of profiling results directly on the dataflow graph and visualiza-
tion specification. We demonstrated VegaProf in action through
three use cases and evaluated using feedback elicited from five
visualization engineers and two Vega developers. In our evaluation,
participants successfully located and brainstormed about the ways
to address performance bottlenecks.

While our work here focused on a DSL for visualization design,
DSLs are ubiquitous across domains and can invariably benefit from
better introspection support to help with myriad tasks ranging from
debugging and profiling to system teaching. Future research can ex-
tend the applications of the techniques operationalized by VegaProf;
in particular, the instrumentation for bidirectional mapping and the
corresponding visual interaction design that couples visualizations
of IRs annotated with measures of interest can benefit developer
tools for DSLs at large.

REFERENCES
[1] Dan Abramov and Andrew Clark. 2015. Redux. https://redux.js.org/. Accessed

on April 3, 2023.
[2] Leilani Battle, Danyel Fisher, Robert DeLine, Mike Barnett, Badrish Chandramouli,

and Jonathan Goldstein. 2016. Making sense of temporal queries with interactive
visualization. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 5433–5443.

[3] Alexander Beischl, Timo Kersten, Maximilian Bandle, Jana Giceva, and Thomas
Neumann. 2021. Profiling dataflow systems on multiple abstraction levels. In
Proceedings of the Sixteenth European Conference on Computer Systems. 474–489.

[4] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 data-driven
documents. IEEE transactions on visualization and computer graphics 17, 12 (2011),
2301–2309.

[5] Qing Chen, Fuling Sun, Xinyue Xu, Zui Chen, Jiazhe Wang, and Nan Cao. 2021.
Vizlinter: A linter and fixer framework for data visualization. IEEE transactions
on visualization and computer graphics 28, 1 (2021), 206–216.

[6] Jürgen Cito, Philipp Leitner, Martin Rinard, and Harald C Gall. 2019. Interactive
production performance feedback in the IDE. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 971–981.

[7] Vega Editor. 2022. Vega Editor. https://vega.github.io/editor/
[8] Facebook. 2013. React. https://reactjs.org/. Accessed on April 3, 2023.
[9] James Gale, Max Seiden, Deepanshu Utkarsh, Jason Frantz, Rob Woollen, and

Çağatay Demiralp. 2022. Sigma Workbook: A Spreadsheet for Cloud Data Ware-
houses. arXiv preprint arXiv:2204.03128 (2022).

[10] Sneha Gathani, Peter Lim, and Leilani Battle. 2020. Debugging database queries:
A survey of tools, techniques, and users. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–16.

[11] Torsten Grust, Fabian Kliebhan, Jan Rittinger, and Tom Schreiber. 2011. True
language-level SQL debugging. In Proceedings of the 14th International Conference

https://redux.js.org/
https://vega.github.io/editor/
https://reactjs.org/


VegaProf UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

on Extending Database Technology. 562–565.
[12] Pat Hanrahan. 2006. VizQL: A Language for Query, Analysis and Visualization.

In SIGMOD.
[13] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2015. Debugging Vega

through Inspection of the Data Flow Graph. In EuroVis Workshop on Repro-
ducibility, Verification, and Validation in Visualization (EuroRV3), W. Aigner,
P. Rosenthal, and C. Scheidegger (Eds.). The Eurographics Association. https:
//doi.org/10.2312/eurorv3.20151144

[14] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2016. Visual debugging
techniques for reactive data visualization. In Computer Graphics Forum, Vol. 35.
Wiley Online Library, 271–280.

[15] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code
with In Situ Visualizations to Aid Program Understanding. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1–12. https://doi.org/10.1145/3173574.3174106

[16] Aspen K Hopkins, Michael Correll, and Arvind Satyanarayan. 2020. VisuaLint:
Sketchy in situ annotations of chart construction errors. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 219–228.

[17] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manipu-
lation interfaces. Human–computer interaction 1, 4 (1985), 311–338.

[18] Alphabet Inc. 2023. Chrome Dev Tools. https://developer.chrome.com/docs/
devtools/. Accessed on April 4, 2023.

[19] AndrewMcNutt and Gordon Kindlmann. 2018. Linting for visualization: Towards
a practical automated visualization guidance system. In VisGuides: 2nd Workshop
on the Creation, Curation, Critique and Conditioning of Principles and Guidelines
in Visualization.

[20] AndrewM. McNutt. 2023. No Grammar to Rule Them All: A Survey of JSON-style
DSLs for Visualization. IEEE Transactions on Visualization and Computer Graphics
29, 1 (2023), 160–170. https://doi.org/10.1109/TVCG.2022.3209460

[21] Dominik Moritz, Daniel Halperin, Bill Howe, and Jeffrey Heer. 2015. Perfopticon:
Visual query analysis for distributed databases. In Computer Graphics Forum,
Vol. 34. Wiley Online Library, 71–80.

[22] Bahare Naimipour, Mark Guzdial, and Tamara Shreiner. 2020. Engaging Pre-
Service Teachers in Front-EndDesign: Developing Technology for a Social Studies
Classroom. In 2020 IEEE Frontiers in Education Conference (FIE). 1–9. https:

//doi.org/10.1109/FIE44824.2020.9273908
[23] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.

2016. Vega-lite: A grammar of interactive graphics. IEEE transactions on visual-
ization and computer graphics 23, 1 (2016), 341–350.

[24] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2016. Reac-
tive Vega: A Streaming Dataflow Architecture for Declarative Interactive Visu-
alization. IEEE Transactions on Visualization and Computer Graphics 22, 1 (jan
2016), 659–668. https://doi.org/10.1109/TVCG.2015.2467091

[25] Eldon Schoop, Forrest Huang, and Bjoern Hartmann. 2021. Umlaut: Debugging
deep learning programs using program structure and model behavior. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–16.

[26] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang,
Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. 2003. Cy-
toscape: ACommunity-Based Framework for Network Visualization andAnalysis.
Genome Research 13, 11 (2003), 2498–2504. https://doi.org/10.1101/gr.1239303

[27] Arthur H Veen. 1986. Dataflow machine architecture. ACM Computing Surveys
(CSUR) (1986).

[28] Vega. 2022. Vega & Vega Lite Visualization Grammars. https://vega.github.io/
[29] HadleyWickham. 2010. A layered grammar of graphics. Journal of Computational

and Graphical Statistics (2010).
[30] Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-

Verlag New York. https://ggplot2.tidyverse.org
[31] Leland Wilkinson. 2012. The grammar of graphics. In Handbook of computational

statistics. Springer, 375–414.
[32] GrahamWills. 2018. Brunel v2.6. https://github.com/Brunel-Visualization/Brunel.

Accessed: 2023-05-04.
[33] Junran Yang, Hyekang Kevin Joo, Sai S Yerramreddy, Siyao Li, Dominik Moritz,

and Leilani Battle. 2022. Demonstration of VegaPlus: Optimizing Declarative
Visualization Languages. In Proceedings of the 2022 International Conference on
Management of Data. 2425–2428.

[34] Geoffrey X Yu, Tovi Grossman, and Gennady Pekhimenko. 2020. Skyline: Inter-
active In-Editor Computational Performance Profiling for Deep Neural Network
Training. In Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology. 126–139.

https://doi.org/10.2312/eurorv3.20151144
https://doi.org/10.2312/eurorv3.20151144
https://doi.org/10.1145/3173574.3174106
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://doi.org/10.1109/TVCG.2022.3209460
https://doi.org/10.1109/FIE44824.2020.9273908
https://doi.org/10.1109/FIE44824.2020.9273908
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1101/gr.1239303
https://vega.github.io/
https://ggplot2.tidyverse.org

	Abstract
	1 Introduction
	2 Related Work
	2.1 Debugging Visualizations
	2.2 Profiling Dataflow Systems

	3 Formative Interviews
	3.1 Design Goals

	4 Visualization profiling
	4.1 Bidirectional Profiling Map
	4.2 Visual Performance Inspection

	5 Use-Cases
	5.1 Visualization Design Decisions
	5.2 Offloading Expensive Operations
	5.3 High-Performance Tool Development

	6 Interview Study
	7 Results
	7.1 Visualization Engineers
	7.2 Vega System Developers
	7.3 Post-Study Questions
	7.4 Study Limitations

	8 Discussion and Recommendations
	9 Future Work
	10 Conclusion
	References

