
Mosaic: An Architecture for Scalable & Interoperable Data Views

Jeffrey Heer and Dominik Moritz

Fig. 1: A Mosaic-based interface for interactive visual exploration of all 1.8 billion stars in the Gaia star catalog. A high-resolution
density map of the sky reveals our Milky Way and satellite galaxies. Stars with higher parallax values are interactively selected, forming
a Hertzsprung-Russell diagram of color versus stellar magnitude on the right. Mosaic offloads density and histogram computation to a
backing scalable database, and automatically builds optimized data cube indexes to support interactive linked views.

Abstract—Mosaic is an architecture for greater scalability, extensibility, and interoperability of interactive data views. Mosaic decouples
data processing from specification logic: clients publish their data needs as declarative queries that are then managed and automatically
optimized by a coordinator that proxies access to a scalable data store. Mosaic generalizes Vega-Lite’s selection abstraction to enable
rich integration and linking across visualizations and components such as menus, text search, and tables. We demonstrate Mosaic’s
expressiveness, extensibility, and interoperability through examples that compose diverse visualization, interaction, and optimization
techniques—many constructed using vgplot, a grammar of interactive graphics in which graphical marks act as Mosaic clients. To
evaluate scalability, we present benchmark studies with order-of-magnitude performance improvements over existing web-based
visualization systems—enabling flexible, real-time visual exploration of billion+ record datasets. We conclude by discussing Mosaic’s
potential as an open platform that bridges visualization languages, scalable visualization, and interactive data systems more broadly.

Index Terms—Visualization, Interaction, Scalability, Grammar of Graphics, Software Architecture, Databases

1 INTRODUCTION

Though many expressive visualization tools exist, scalability to large
datasets and interoperability across tools remain challenging [7]. The
visualization community lacks open, standardized tools for integrating
visualization specifications with scalable analytic databases. While
libraries like D3 [8] embrace Web standards for cross-tool interoper-
ability, higher-level frameworks often make closed-world assumptions,
complicating integration with other tools and environments.

As a concrete example, consider the Vega [36] and Vega-Lite [35]
ecosystem. By default, data transformations are performed within a
JavaScript runtime, limiting scalability due to both data movement
and a lack of parallel computing. Meanwhile, other architectural deci-
sions impede extensibility and interoperability. Vega-Lite’s selection

• Jeffrey Heer is with University of Washington. E-mail: jheer@uw.edu.
• Dominik Moritz is with Carnegie Mellon University. E-mail:

domoritz@cmu.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

abstraction provides a powerful, concise model for interaction, yet is
realized in terms of opaque internal Vega constructs that complicate
coordination with external components and environments such as note-
books. As a result, online requests1 for table views, data-driven input
widgets, more interoperable selections, and new mark types (e.g., for
raster heatmaps and contour plots in Vega-Lite) have gone unaddressed
for years. Other tools face similar limitations [4, 43].

We propose a standardized “middle-tier” architecture that mediates
data-driven components and backing data sources. A common layer
between databases and components can coordinate linked selections
and parameters among views, while providing automatic query opti-
mizations for greater scalability. We focus on the Web browser as
the primary site of rendering and interaction, and seek to coordinate
diverse components via standard protocols for communicating data
needs, dynamic parameters, and linked selection criteria.

We contribute Mosaic, an architecture for interoperable, data-driven
components—including visualizations, tables, and input widgets—
backed by scalable data stores. A key idea of Mosaic is to decouple
data processing from specification. Mosaic Clients communicate their
data needs as declarative queries. A central Coordinator manages these
queries, applies automatic optimizations, and pushes processing to a

1See github.com/vega/vega/issues/ and github.com/vega/vega-lite/issues/

https://orcid.org/0000-0002-6175-1655
https://orcid.org/0000-0002-3110-1053
https://en.wikipedia.org/wiki/Hertzsprung-Russell_diagram
https://github.com/vega/vega/issues/
https://github.com/vega/vega-lite/issues/
mailto:reprints@ieee.org
mailto:domoritz@cmu.edu
mailto:jheer@uw.edu

backing Data Source (by default DuckDB [34]). Dynamic Params and
Selections enable coordinated updates to both clients and queries to
support linked interaction. A variety of components and toolkits can
interoperate via Mosaic’s data management and selection facilities.

A main contribution of Mosaic is to unify the abstractions of popular
visualization toolkits with scalable visualization techniques. Individ-
ual clients may perform local optimization in their generated queries.
Meanwhile, the Mosaic Coordinator optimizes over multiple views
and interaction cycles by caching, consolidating similar queries, and
building data cube indexes for linked selections over aggregated data.
We present a novel indexing approach that extends prior work on im-
Mens [25] and Falcon [31] to support automatic index generation over
a larger set of query types and aggregation functions. Mosaic also en-
ables flexible deployment: using DuckDB and varied data connectors,
Mosaic can process data directly in the browser via WebAssembly,
within a Jupyter Notebook kernel, or on local or remote servers.

We demonstrate Mosaic’s extensibility and interoperability by de-
veloping both data-driven input widgets and vgplot, a grammar of in-
teractive graphics in which graphical marks are Mosaic clients. Marks
in vgplot push filtering, binning, aggregation, and regression trans-
formations to a backing database. Interactors for pan/zoom, point,
and interval selections produce dynamic queries mediated by Mosaic
Params and Selections. Akin to Vega-Lite, Mosaic users can write
portable, declarative specifications that can be generated by various
languages and integrated in computational notebooks.

To assess scalability, we present benchmark results for both static
and interactive visualizations. Mosaic outperforms Vega, VegaFusion,
and Observable Plot, typically by one or more orders of magnitude. For
the static cases, DuckDB performance and client-level optimization
account for the bulk of Mosaic’s benefits. In the interactive cases,
Mosaic’s automatic data cube indexing enables real-time interaction
with billion+ record datasets. We conclude by discussing limitations
and Mosaic’s use as a platform for research and development.

2 RELATED WORK

Mosaic seeks to unify prior work on scalable visualization methods
with expressive languages and tools for interactive visualization.

2.1 Scalable Visualization

Methods for scaling visualizations to larger datasets include sampling,
fitting parametric models, and binned aggregation (potentially with
smoothing). While valuable, both sampling and modeling are lossy,
and so may fail to preserve structures and outliers of interest. Carr et
al. [10] describe scalable scatter plot methods using hexagonal binning.
Later works, including imMens [25] and Wickham’s bin-summarise-
smooth framework [44], further describe how to scale up a variety of
common plots via binned aggregation. Density, violin, and contour
plots can be constructed by smoothing binned counts [17, 41]. To scale
traditional line or area charts, M4 [19, 20] uses a pixel-aware binning
scheme that is visually identical to normal line rasterization. While
many techniques focus on binning individual data points, Curve Density
Estimates [23] and DenseLines [28] instead convey rendered densities
for many series drawn as lines or curves. Mosaic provides an expressive
and extensible system to develop and flexibly deploy such techniques.

Other methods focus on interactive visualization, supporting effi-
cient updates for filtering and (re-)aggregation. Nanocubes [24] are
specialized indexes for spatio-temporal queries, but can take consider-
able time to build. imMens [25] and Falcon [31] use multivariate data
tiles: pre-aggregated data cubes [16] that can be rapidly queried to com-
pute filtered aggregates, making interactive performance dependent on
a chosen binning resolution rather than the number of backing records.
Falcon also performs prefetching by requesting tiles when the mouse
cursor enters a plot, prior to any selections. ForeCache [5] prefetches
data tiles for multi-scale pan/zoom operations based on a model of user
navigation behavior. Khameleon [27] streams approximate data tiles
with a scheduler that trades off result quality and available bandwidth.

The Mosaic architecture supports indexing, prefetching, and other
optimizations. Most notably, Mosaic’s Coordinator analyzes client
queries and linked selections to determine if pre-aggregated indexes are

applicable; if so, it prefetches data cubes automatically. In contrast to
prior work, our implementation supports aggregations beyond count
(e.g., sum, avg, min, max), uses sparse indexes that scale to larger
datasets, and caches data cubes in a backing database for reuse.

Kyrix [39] provides an API for scalable zoomable user interfaces,
including precomputation of spatial positions and indexes within a
backing database to support low-latency interaction. Kyrix-S [38]
extends Kyrix with additional operators and a declarative specification
syntax for scatter plot visualizations. Mosaic differs in providing a
more general and extensible architecture (e.g., one could implement
Kyrix-like systems using Mosaic) and in its use of reactive parameters
and selections to coordinate interactive updates. Meanwhile, DIEL
[48] orchestrates computation between local and remote databases. In
contrast to Mosaic’s reusable higher-level abstractions, DIEL requires
writing application-specific queries and library integrations.

2.2 Visualization Languages and Tools

Commercial systems, including Tableau (previously Polaris [37]) and
business intelligence tools, support visualizations backed by databases.
However, the techniques used by these systems are proprietary, rarely
published, and unavailable for researchers to freely use and extend.

Multiple research systems focus on linked interactions across views.
Snap-Together visualization [33] and DEVise [26] support coordinated
views based on a relational data model. Users of Glue [2] provide
schema mappings between datasets to enable linked plotting and fil-
tering. Nebula [11] represents coordination behaviors using structured
natural language templates. Improvise [42] supports coordination via
dynamic parameters (live properties) and coordinated queries defined
over these parameters. Mosaic supports dynamic parameters (Params)
as well as linked Selections modeled as declarative query predicates.

Meanwhile, open-source tools inspired by Wilkinson’s Grammar
of Graphics [45]—including ggplot2 [43], Vega [36], Vega-Lite [35],
and Observable Plot [4]—support an expressive range of visualizations,
often with a concise, combinatorial syntax. Vega and Vega-Lite further
support declarative specification of interaction methods. Vega-Lite’s
selection abstraction combines input events and scale inversions to
form query predicates over selected intervals or point values. These
selections are realized as non-standardized internal Vega constructs,
complicating interoperation with non-Vega tools.

Moreover, these languages were not designed to handle millions
of data points. For greater scale, VegaFusion [22] and VegaPlus [49]
analyze Vega dataflows and push transformations to a database. Still,
many Vega transformations are not well supported. As these systems
modify Vega internally, limitations around extensibility and interoper-
ability (Section 1) also remain. Mosaic clients instead publish queries
directly, sidestepping the complexities of translating Vega dataflows to
other computation models. Our benchmark results (Section 8) find that
Mosaic provides greater scalability across a larger set of visualizations.

Mosaic is an open, middle-tier architecture that higher-level lan-
guages such as ggplot2, Vega-Lite, or Observable Plot could target.
Using a shared architecture, a visualization grammar could readily
interoperate with other libraries, including input components and other
visualization tools. We demonstrate this through the design of both in-
put widgets and vgplot, a Mosaic-based grammar of interactive graphics
that combines concepts from existing visualization tools.

Mosaic offers scalability by proxying queries to a backing database,
and supports interaction by standardizing and generalizing Vega-Lite-
style selections. Compared to Vega-Lite, Mosaic selections are decou-
pled from input event handling and support more complex resolution
strategies. A single Mosaic selection may combine predicates provided
by a variety of diverse views and input techniques. Mosaic selections
can also synthesize different predicates for different views (clients),
enabling complex coordination behaviors such as cross-filtering.

3 THE MOSAIC ARCHITECTURE

A Mosaic application consists of data-consuming Clients registered
with a central Coordinator. Clients publish their data needs as declara-
tive queries. A Coordinator manages these queries, performs potential
optimizations, submits queries to a backing Data Source, and returns

Fig. 2: Mosaic architecture overview. A Coordinator proxies queries to a
backing Data Source for one or more data-consuming Clients. Params
and Selections broadcast reactive updates for scalar values or query
predicates, respectively. Interactions that update Params and Selections
may be handled directly by a client, or via Interactor components.

results or errors back to clients. Interactions among components are
mediated by Params and Selections, reactive variables for scalar values
and query predicates, respectively. Figure 2 illustrates this architec-
ture. For clarity the figure depicts a single client; Mosaic applications
typically include multiple clients with shared Params or Selections.

Though various query languages might be used, given the ubiquity
of the relational data model and the availability of scalable databases,
we focus on SQL (Structured Query Language). Our reference imple-
mentation uses DuckDB [34] as the backing data source. DuckDB is
a high-performance open-source analytic database that can run both
server-side and in the browser via WebAssembly (WASM) [21].

3.1 Clients

Mosaic Clients are responsible for publishing their data needs and
performing data processing tasks—such as rendering a visualization—
once data is provided by the Coordinator. Clients typically take the
form of Web (HTML/SVG) elements, but are not required to.

Figure 3 depicts a Mosaic lifecycle. Upon registration, the Coordina-
tor calls the client fields() method to request an optional list of fields,
consisting of table and column names as well as statistics such as the
row count or min/max values. The Coordinator queries the Data Source
for requested metadata (e.g., column type) and summary statistics as
needed, and returns them via the client fieldInfo() method.

Next, the Coordinator calls the client query() method. The return
value may be a SQL query string or a structured object that produces a
query upon string coercion. Mosaic includes a query builder API that
simplifies the construction of complex queries while enabling query
analysis without need of a parser. The query method takes a single
argument: an optional filter predicate (akin to a SQL WHERE clause)
indicating a data subset. The client is responsible for incorporating the
filter criteria into the returned query. Before the Coordinator submits
a query for execution, it calls queryPending() to inform the client.
Once query execution completes, the Coordinator returns data via the
client queryResult() method or reports an error via queryError().

Clients can also request queries in response to internal events. The
client requestQuery(query) method passes a specific query to the
Coordinator with a guarantee that it will be evaluated. The client
requestUpdate() method instead makes throttled requests for a stan-
dard query(); multiple calls to requestUpdate() may result in only
one query (the most recent) being serviced. Finally, clients may expose
a filterBy Selection property. The predicates provided by filterBy
are passed as an argument to the client query() method.

3.2 Coordinator

The Coordinator is responsible for managing client data needs. Clients
are registered via the Coordinator connect(client) method, and
similarly removed using disconnect(). Upon registration, the event
lifecycle begins. In addition to the fields and query calls described
above, the Coordinator checks if a client exposes a filterBy property,
and if so, adds the client to a filter group: a set of clients that share the
same filterBy Selection. Upon changes to this selection (e.g., due

Fig. 3: Example Mosaic event timeline (not to scale). A client can provide
a list of fields for which the Coordinator returns metadata. Next, the
Coordinator requests a query from the Client, submits it to a Data Source
for execution (dotted lines), and returns the result, providing the data
the client needs to render. Interactions such as interval selections or
pan/zoom update the state of linked Params or Selections, triggering
additional rounds of query and update. While a query is being executed,
corresponding selection updates are throttled (dashed lines): intermedi-
ate updates are dropped and only the most recent update is serviced.

to interactions such as brushing or zooming), the Coordinator collects
updated queries for all corresponding clients, queries the Data Source,
and updates clients in turn. This process is depicted in Figure 3.

As input events (and thus Selection updates) may arrive at a faster
rate than the system can service queries, the Coordinator also throttles
updates for a filter group. If new updates arrive while a prior update is
being serviced, intermediate updates are dropped in favor of the most
recent update. The Coordinator additionally performs optimizations
including caching and data cube indexing, detailed later in Section 6.

3.3 Data Source

The Coordinator submits queries to a Data Source for evaluation, us-
ing an extensible set of database connectors. By default Mosaic uses
DuckDB as its backing database and provides connectors for commu-
nicating with a DuckDB server via Web Sockets or HTTP calls, with
DuckDB-WASM in the browser, or through Jupyter widgets to DuckDB
in Python. For data transfer, we default to the binary Apache Arrow
format [1], which enables efficient serialization of query results with no
subsequent parsing overhead. While the socket and HTTP connectors
also support JSON, this is more costly to serialize, results in larger
payloads, and must be parsed on the client side.

3.4 Params and Selections

Params and Selections support cross-component coordination. Akin
to Vega’s signals [36] and Improvise’s live properties [42], Params
are reactive variables that hold scalar values (accessible via the value
property) and broadcast updates upon changes. Params can parameter-
ize Mosaic clients and may be updated by input widgets. The Mosaic
architecture is agnostic as to where Param and Selection updates come
from. As we will illustrate later, updates may be initiated by clients
themselves or by dedicated interactor components.

A Selection is a specialized Param that manages one or more pred-
icates (Boolean-valued query expressions), generalizing Vega-Lite’s
selection abstraction [35]. Interaction components update selections
by providing a clause, an object consisting of the source component
providing the clause, a set of clients associated with the clause, a query
predicate (e.g, the range predicate column BETWEEN 0 AND 1), a cor-
responding value (e.g., the range array [0,1]), and an optional schema
providing clause metadata (used for optimization, see Section 6). Upon
update, any prior clause with the same source is removed and the new,
most recent clause (called the active clause) is added. Selections over-
ride the Param value property to return the active clause value, making
Selections compatible where standard Params are expected.

Selections expose a predicate(client) function that takes a
client as input and returns a correponding predicate for filtering the
client’s data. Selections apply a resolution strategy to merge clauses
into client-specific predicates. The single strategy simply includes only
the most recent clause. The union strategy creates a disjunctive pred-
icate, combining all clause predicates via Boolean OR. Similarly, the
intersect strategy performs conjunction via Boolean AND. Any of these

Fig. 4: Interactive dashboard of Olympic athletes. Left: Input widgets with
data-driven content drive filtering by sport, sex, and name. A scatter plot
with regression lines conveys the relationship between weight and height.
A sortable table component shows record-level details. Right: A faceted
plot shows weight distributions by sport and sex. Interquartile ranges
overlay the raw values. Mosaic manages all data access, interactive
filtering, regression, and IQR calculations.

const sel = Selection.intersect()
hconcat(
menu({label: 'Sport', from: 'athletes', column: 'sport', as: sel}),
menu({label: 'Sex', from: 'athletes', column: 'sex', as: sel}),
search({label: 'Name', from: 'athletes', column: 'name', as: sel})
)
Fig. 5: JavaScript specification of the inputs along the top of Figure 4.

strategies may also crossfilter by omitting clauses where the clients
set includes the input argument to the predicate() function. This
strategy enables filtering interactions that affect views other than the
one currently being interacted with.

Both Params and Selections support value event listeners, corre-
sponding to value changes. Selections additionally support activate
events, which provide a clause indicative of likely future updates. For
example, a brush interactor may trigger an activation event when the
mouse cursor enters a brushable region, providing an example clause
prior to any actual updates. As discussed in Section 6, activation events
can be used to implement optimizations such as prefetching indexes.

3.5 Extensibility and Interoperability

As a middle-tier architecture, Mosaic is designed to be extensible for
both practical purposes and research experimentation. The Client API
was carefully designed to offload all query management responsibility
to the Coordinator. As a result, Coordinator-specific optimizations
(Section 6) and even the entire Coordinator implementation itself can
be replaced without affecting client implementations.

While our implementation primarily targets SQL, DuckDB, and
Apache Arrow, any of these pieces might be replaced. We strive to use
standard SQL constructs, enabling other relational databases. Clients
can use alternative query languages if an augmented Coordinator and
Data Source support them. Similarly, other data transfer formats could
be used, so long as the result either conforms to standard JavaScript
iterables or the clients involved can handle the specialized format.

Mosaic is intended to support integration across a variety of diverse
clients. In the next sections, we demonstrate how both standard input
widgets and a full grammar of interactive graphics can be implemented
and flexibly interoperate using the Mosaic API. In the future these
could be further augmented with clients for custom visualization tasks
(e.g., graph drawing) and rendering methods (e.g., 3D WebGL views).

4 MOSAIC INPUT COMPONENTS

Inspired by Observable’s inputs package [3], we developed a set of com-
mon input widgets and a table viewer. Each is implemented as a Mosaic
client and use Params and Selections for linked interactions. Figure 4
shows a dashboard that incorporates menu, search, and table com-
ponents, while Figure 8 incorporates a slider component.

Fig. 6: A subset of mark types supported by vgplot : bar, line, text,
tick, area; regression, hexbin, contour, raster, and denseLine.

The slider, menu, and search inputs support dual modes of op-
eration: they can be manually configured or they can be backed by
a database table. If a backing table and column are specified, the
slider’s query() method gets the minimum and maximum column
values to parameterize the slider. The menu and search components
instead query for distinct column values, and use those to populate the
menu or autocomplete options (Figure 4), respectively.

All input widgets can write updates to a provided Param or Selection.
Param values are updated to match the input value. Selections are pro-
vided a predicate clause (Section 3.4). This linking can be bidirectional:
an input component will also subscribe to a Param and track its value
updates. Two-way linking is also supported for Selections using single
resolution, where there is no ambiguity regarding the value.

The table component provides a sortable, scrollable table grid view.
If a set of backing columns is provided, the table fields() method
requests metadata for those columns. If a backing table is provided
without explicit columns, fields() instead requests all table columns.
The returned metadata is used to populate the table header and guide
formatting and alignment by column type.

To limit data transfer, the table query() method requests rows in
batches using SQL LIMIT and OFFSET clauses. As a user scrolls the
table, the requestQuery() method is used to request a new batch with
the proper offset. To reduce latency, the component further requests
that the Coordinator prefetch the subsequent data batch.

Table components are sortable (Figure 4): clicking a column header
toggles ascending and descending order. When sort criteria change, the
current data is dropped and requestQuery() is called to fetch a sorted
data batch. As a user scrolls, these sort criteria persist. If provided, the
filterBy Selection is used to filter table content.

5 VGPLOT: AN INTERACTIVE VISUALIZATION GRAMMAR

To demonstrate extensibility and interoperability in Mosaic, we devel-
oped vgplot, a grammar of graphics [45] in which graphical marks are
Mosaic clients. As its name suggests, vgplot combines concepts from
multiple grammars. vgplot adopts Observable Plot’s chart semantics [4],
which incorporate ideas from both ggplot2 [43] and Vega-Lite [35].
Like Vega-Lite, vgplot supports interaction and declarative specifica-
tion either using an API or standalone JSON/YAML specs. However,
as vgplot is based on Mosaic, it can readily interoperate with any other
Mosaic clients, such as the input components of Section 4.

5.1 Plot Elements

A plot is a visualization in the form of a Web element. As in other
grammars, a plot consists of marks—graphical primitives such as bars,
areas, and lines—that serve as chart layers. Each plot includes a set of
named scale mappings such as x, y, color, opacity, etc. Plots can
facet the x and y dimensions, producing associated fx and fy scales.
Plots are rendered to SVG output by marshalling a specification and
passing it to Observable Plot. A plot is defined as a list of directives
defining plot attributes, marks, interactors, or legends.

Attributes configure a plot (width, height) and its scales (e.g.,
xDomain, colorRange, yTickFormat). Attributes may be Param-
valued, in which case a plot updates upon Param changes. vgplot
also introduces a Fixed scale domain setting (e.g., xDomain(Fixed)),
which instructs a plot to first calculate a scale domain in a data-driven
manner, but keep that domain fixed across subsequent updates. Fixed
domains prevent disorienting scale domain “jumps” that hamper com-
parison across filter interactions (a limitation of Vega-Lite).

Marks are graphical primitives, often with accompanying data trans-
forms, that serve as chart layers. Each vgplot mark is a Mosaic client

const brush = Selection.intersect()
const channels = { x: 't', y: 'v', fill: 'steelblue' }
vconcat(
plot(
areaY(from('walk'), channels),
intervalX({ as: brush })
),
plot(
areaY(from('walk', { filterBy: brush }), channels),
yDomain(Fixed)
)
)

Fig. 7: An overview+detail visualization of a 50,000 point time-series and
JavaScript API specification. The areaY mark uses M4 optimization [19]
to reduce the number of drawn points by over an order of magnitude.

const bandwidth = Param.value(10)
vconcat(
slider({ as: bandwidth, min: 0.1, max: 100, step: 0.1 }),
plot(
densityY(from('flights'), { x: 'distance', bandwidth }),
yAxis(null)
)
)

Fig. 8: 1D kernel density estimate (KDE) of airline miles flown. Linear
binning is performed in database, subsequent smoothing is performed in
browser. Param updates to the kernel bandwidth from the slider are
calculated immediately, without having to re-query the database.

that produces queries for needed data. Figure 6 shows some supported
mark types. Marks accept a data source definition and a set of supported
options, including encoding channels (such as x, y, fill, and stroke)
that can encode data fields. A data field may be a column reference
or query expression, including dynamic Param values. Common ex-
pressions include aggregates (count, sum, avg, median, etc.), window
functions (e.g., moving averages), date functions, and a bin transform.
Field expressions are specified using Mosaic’s SQL builder methods.

Basic marks, such as dot, bar, rect, cell, and text mirror their
namesakes in Observable Plot [4]. Variants such as barX and rectY
indicate spatial orientation and data type assumptions. For example,
barY indicates vertical bars—continuous y over an ordinal x domain—
whereas rectY indicates a continuous x domain. Basic marks follow
a straightforward query() construction process: Iterate over all en-
coding channels. If no aggregates are found, SELECT all fields directly.
If aggregates are present, include non-aggregate fields as GROUP BY
criteria. If provided, map the filter argument to a WHERE clause. For
more details on query generation, see Appendix A.

The area and line marks connect consecutive sample points. Fig-
ure 7 presents an overview+detail area chart. The queries for spatially
oriented marks (areaY, lineX) apply M4 optimization [19, 20]. The

Fig. 9: Hexagonal bins of airline delay by scheduled departure time,
alongside marginal histograms. Hex binning and aggregation are per-
formed in database. Interactive changes to the color scale (e.g., linear,
log, or square root scale) are processed immediately in browser.

plot(
denseLine(from('stocks_after_2006'), {
x: 'Date', y: 'Close', z: 'Symbol', fill: 'density'
}),
colorScheme('pubugn')
)

Fig. 10: An arc-length normalized density line chart [28] for 240k monthly
stock price values. Note high points across the top, the 2008 crash, and
distinct bands of $25 and $15 stocks.

query() method determines the pixel resolution along the major axis
and performs perceptually faithful, pixel-aware binning of the series,
limiting the number of drawn points. This optimization offers dramatic
data reductions, potentially spanning multiple orders of magnitude.

The regression mark (Figure 4) visualizes linear regression fits.
Statistical calculations are performed in a single aggregate query().
The mark then draws regression lines and confidence intervals.

The densityX/Y marks perform 1D kernel density estimation. Fig-
ure 8 shows a densityY mark, with a slider-bound bandwidth
Param. The generated query() performs linear binning [18,41], which
proportionally assigns point weights between adjacent bins to provide
greater estimation accuracy [17]. Subqueries for “left” and “right”
bins are aggregated into a 1D grid, then smoothed in-browser using
Deriche’s accurate linear-time approximation [14, 17].

The density2D, contour, and raster marks compute densities
over a 2D domain. Binning and aggregation is performed in database,
while dynamic changes of bandwidth, contour thresholds, and color
scales are handled immediately in the browser. The hexbin mark
pushes hexagonal binning and aggregation to the database (Figure 9);
color and size channels may map to count or other aggregate functions.

Rather than point densities, the denseLine mark (Figure 10) plots
densities of line segments [28]. The query() method pushes line
rasterization and aggregation to the database with a multi-part process
described in Appendix A.5. We added the denseLine mark late in our
development process to test extensibility, overriding the raster mark
with a new query() method. As a result, the denseLine mark inherits
raster’s smoothing capability to create curve density estimates [23].

Interactors imbue plots with interactive behavior. Most interactors
listen to input events to update bound Selections. The toggle interac-

tor selects individual points (e.g., by click or shift-click) and generates
a selection clause over specified fields of those points. Other interactors
include: nearestX/Y to select the nearest value along the x and/or
y channel, intervalX/Y to create 1D or 2D interval brushes (Fig-
ure 7), and panZoom interactors that produce interval selections over
corresponding x or y scale domains (c.f., Vega-Lite [35]). interval
interactors accept a pixelSize parameter that sets the brush resolu-
tion: values may snap to a grid whose bins are larger than screen pixels,
which can be leveraged to optimize query latency (Section 6). The
highlight interactor updates the rendered state of a visualization in
response to a Selection, querying for a selection bit vector and then
modifying unselected items to a translucent, neutral gray color.

Legends can be added to a plot or as a standalone element. The
name directive gives a plot a unique name, which a standalone legend
can reference (legendColor({for:'name'})) to avoid respecifying
scale domains and ranges. Legends also act as interactors, taking a
bound Selection as a parameter. For example, discrete legends use the
logic of the toggle interactor to enable point selections. Two-way
binding is supported for Selections using single resolution, enabling
legends and other interactors to share state, as in Figure 11.

Finally, the layout functions vconcat (vertical concatenation) and
hconcat (horizontal concatenation) enable multi-view layout. Layout
helpers can be used with plots, inputs, and arbitrary Web content such
as images and videos. To ensure spacing, the vspace and hspace
helpers add padding between elements in a layout.

5.2 Declarative Specification

In addition to a JavaScript API, all vgplot constructs, Mosaic inputs,
and layout helpers can be authored using a JSON specification format.
YAML, a more human-readable format that maps to JSON, can also be
used. As a result, Mosaic applications can be conveniently generated
from other programming languages. Figure 11 shows integration of Mo-
saic with Jupyter notebooks. The Mosaic release includes a notebook
widget which, given a YAML or JSON spec, creates a DuckDB connec-
tion in the Jupyter Kernel that communicates via Jupyter Comms with
a notebook output cell running Mosaic JavaScript code. The Python
DuckDB API can directly access Pandas data frames, supporting easy
and efficient integration into Jupyter workflows. In addition, Param
and Selection values are shared with the kernel, accessible as Python
variables. We implemented the Jupyter connector in about a hundred
Mosaic-specific lines of code, showing the ease of adapting Mosaic to
new environments. In the future, a Python API akin to Altair [40] could
programmatically generate Mosaic/vgplot JSON specifications.

6 COORDINATOR OPTIMIZATIONS

Mosaic supports query optimization at multiple levels. For optimiza-
tions that are specific to a given visualization type (such as M4 for
line and area marks), clients can perform local optimizations as part
of query generation. The Coordinator, in turn, provides support for
optimizations that extend over multiple views and interaction cycles.

6.1 Query Caching, Consolidation, and Prefetching

Query caching optimizes for repeated queries. The Coordinator uses
a standard LRU cache, storing query results keyed by SQL query
text. Future research could explore alternative cache eviction policies
that account for latency, dataset size, or other factors. Already, we
notice greater benefits for caching than first anticipated: we observe
that interactive states are often revisited (even during brushing), and
highlight bit vector queries are often shared across plots.

The Coordinator also applies query consolidation, merging overlap-
ping queries into a single query to reduce processing and network time.
As multiple queries tend to be issued in tandem (for example upon
initialization), the Coordinator waits one animation frame, collects
incoming queries, and merges those that query the same backing table
and GROUP BY dimensions. Upon query completion, the Coordinator
parcels out appropriate projections to clients. Query consolidation is
valuable for optimizing multiple views that show data at the same level
of aggregation. For example, data for a 4x4 scatter plot matrix requires
only 1 consolidated query rather than 16 separate queries.

params:
click: { select: single }
domain: [sun, fog, drizzle, rain, snow]
colors: ['#e7ba52', '#a7a7a7', '#aec7e8', '#1f77b4', '#9467bd']

vconcat:
- plot:
- mark: dot
data: { from: weather, filterBy: $click }
x: { dateMonthDay: date }
y: temp_max
fill: weather
r: precipitation

- { select: intervalX, as: $range }
- { select: highlight, by: $range, fill: '#eee' }
- { legend: color, as: $click, columns: 1 }
xyDomain: Fixed
colorDomain: $domain
colorRange: $colors

- plot:
- mark: barX
data: { from: weather, filterBy: $range }
x: { count: }
y: weather
fill: weather

- { select: toggleY, as: $click }
- { select: highlight, by: $click }
xDomain: Fixed
colorDomain: $domain
colorRange: $colors

Fig. 11: Interactive exploration of Seattle weather with YAML specification
making use of data transforms, filtering, highlighting, and linked legends.
Param and Selection references use a $ prefix. If a Selection is not
explicitly defined, one with the intersect resolution strategy is created.

Prefetching reduces latency by querying data before it is needed.
Clients can issue queries using the Coordinator’s prefetch method.
These requests are enqueued with a lower priority than standard queries.
Prefetched results are then stored in the Coordinator’s cache, available
for subsequent requests. Clients may cancel prefetch requests in
response to interactive updates. As described next, the Coordinator also
performs automatic prefetching when building data cube indexes.

6.2 Data Cube Indexes

To optimize filtering of aggregated data, the Coordinator automatically
builds indexes in the form of small data cubes [16] that can rapidly
service interactive queries. Upon updates to a filter group Selection, the
Coordinator analyzes the active selection clause and client query()
output. If generated queries involve group-by aggregation using sup-
ported aggregate functions (currently count, sum, avg, min, and max),
the Coordinator will rewrite queries to create data cube index tables.

Akin to Falcon [31], Mosaic builds indexes that pre-aggregate data
between an active view and another filtered view. However, Mosaic
extends Falcon in multiple ways. Rather than assume a prespecified
set of visualizations, Mosaic automatically applies data cube indexing
based on observed queries and selections. Next, index tables are built
and stored in the database, rather than shipped to the browser. Queries to
an index thus use the more scalable database for processing and indexed
tables are cached in-database for reuse. In contrast to Falcon, we do not
create summed area tables [13], which use a dense representation that
can overwhelm available memory (Section 8.2). Foregoing summed
area tables also permits indexing of aggregate functions other than
count and sum, including avg, min, and max, in a straightforward way.

For example, given an interval selection over the column $u, the
Coordinator uses the number of $pixels and the minimum and max-
imum possible brush values in the data domain [$bmin, $bmax] to
produce pixel-level bins for all possible brush positions. The following
query creates an index table for brush interactions between a linear,
one-dimensional selection clause and a single histogram over column
$v (with initial value $v0 and bin size $step):

CREATE TEMP TABLE IF NOT EXISTS cube_index_a097caa4 AS
SELECT
$v0 + $step * FLOOR(($v - $v0) / $step) AS x1,
$v0 + $step * (FLOOR(($v - $v0) / $step) + 1) AS x2,
COUNT(*) AS y,
FLOOR($pixels * ($u - $bmin) / ($bmax - $bmin)) AS activeX

FROM $table
GROUP BY x1, x2, activeX

The table name includes a hash of the SELECT statement that creates the
table, enabling easy reuse. If the table already exists it is not re-created.
Upon selection updates, the Coordinator issues queries to the index
table. For data-space brush endpoints $b0 and $b1, the index query is:

SELECT x1, x2, SUM(y) FROM cube_index_a097caa4
WHERE activeX BETWEEN
FLOOR($pixels * ($b0 - $bmin) / ($bmax - $bmin)) AND
FLOOR($pixels * ($b1 - $bmin) / ($bmax - $bmin))
GROUP BY x1, x2

The size of the index table is bound by the number of bins (binned $v
steps and $pixels), not the size of the input data. Two-dimensional
brushes are handled similarly, resulting in both activeX and activeY
index table columns. To index client queries with subqueries or com-
mon table expressions, the indexer performs subquery pushdown of
interactive dimensions (e.g., brush pixel bins) so that these values pass
from subqueries to the top-level aggregation (see Appendix A.4).

Index tables include bins for each interactive dimension of an active
selection clause. To determine these dimensions, the indexer uses
metadata provided by a Selection clause’s schema property. The schema
indicates the abstract predicate type: one of interval or point. The
schema for interval types also includes spatial x/y scale definitions and
the interactive pixel size. Larger interactive pixels lower the interactive
resolution, requiring fewer index bins [31]. The indexer determines
interactive extents from the scale ranges and interactive pixel size, and
bins non-linear scales such as log, sqrt, and symlog based on the scale
type. In sum, Selection clauses provide not only query predicates, but
also the encoding information necessary for automatic optimization.

Data cube indexes can dramatically reduce interactive latency [25,
31]. While common cases include cross-filtered histograms (Figure 13),
automatic application also optimizes cases we did not initially expect,
including hexbin and denseLine filtering over fixed domains (e.g.,
brushing histograms in Figure 9) and the weather example in Figure 11
(index-optimized filtering of the lower plot).

Index construction can sometimes be costly (Section 8.2). To
prefetch indexes, each filter group monitors Selection activate
events, which interactors trigger when a pointer enters a view. Upon
activation, the Coordinator submits queries to build index tables before
an interval or point selection is initiated. For longer construction times,
the Coordinator and Mosaic DuckDB server can record interactions to
precompute bundles of queries and index tables for future use.

Fig. 12: Linked weather plots. A Vega-Lite plot (left) populates a Mosaic
selection to drive an average line (red) and filter a vgplot chart (right).

const brush = Selection.crossfilter()
vconcat(['delay', 'time', 'distance'].map(column =>
plot(
rectY(from('flights', { filterBy: brush }), {
x: bin(column), y: count(), fill: 'steelblue', inset: 0.5
}),
intervalX({ as: brush }), xDomain(Fixed)
)
))

Fig. 13: Histograms showing arrival delay, departure time, and distance
flown for 10M flight records. An interval selection reveals that flights
departing later in the day are more likely to be delayed.

7 EXAMPLES

We demonstrate Mosaic’s expressivity and concision through examples.
Earlier instances include scalable area charts (Figure 7) and density
plots (Figures 8–10). Here we provide more complex examples. For
additional examples, see Appendix B in the supplemental material.

Seattle Weather. Figure 11 shows interactive exploration of Seattle
weather, adapted from a Vega-Lite example. The top plot uses a dot
mark and intervalX and highlight interactors. The x channel field
uses a dateMonthDay transform to map multi-year data to a single
year. The bottom plot uses a barX mark to count days per weather
type, with a filterBy selection driven by a selected interval. Both the
bars and legend serve as toggle interactors that drive a highlight
for the bars and a filterBy selection for the dot above. The legend
and barX marks share a selection and update in tandem.

Vega-Lite Integration. Figure 12 demonstrates tool interoperability:
a Vega-Lite plot of precipitation filters a vgplot scatter plot of tempera-
ture and wind. Given the Vega-Lite specification, this example extracts
transforms to generate Mosaic clients, and maps internal Vega-Lite
selections to Mosaic selections. As a result, Mosaic mediates both data
access and linked interactions for the Vega-Lite plot.

const point = Param.value(new Date('2015-04-20'))
plot(
ruleX({ x: point }),
textX({ x: point, text: point, frameAnchor: 'top', ... }),
lineY(from('stocks'), { x: 'Date', stroke: 'Symbol',
y: sqlClose / (SELECT Close FROM stocks

WHERE Symbol = source.Symbol AND Date = ${point}) }),
nearestX({ as: point }),
yScale('log'), yGrid(true), yTickFormat('%')
)

Fig. 14: Stock returns normalized to a hypothetical purchase date. On
mouse move the prices are renormalized for the nearest date by a
parameterized expression created with Mosaic’s sql template literal.

Fig. 15: Electrical recordings from a mouse brain. Prefetching enables
smooth panning of a raster over 10.7M time samples (4.1B rows).

Olympic Athlete Dashboard. Figure 4 shows an interactive dash-
board of Olympic athlete data, showing interoperation of input widgets,
tables, regression models, and a multi-layer faceted plot. All compo-
nents share a single intersect selection for filtering across views.

Flight Data. Figure 13 shows linked histograms for 10M flights [9].
Each consists of a rectY mark with a bin transform, count aggregate,
and a shared filterBy crossfilter selection driven by intervalX
brush interactors. Interactive updates are served by data cube indexes.

Normalized Stock Prices. Figure 14 shows stock prices on a log
scale. A nearestX interactor selects the nearest market day; this value
parameterizes a field expression that normalizes prices to show returns
if one had invested on that day. Normalization is performed in database
by a one-line expression with a scalar subquery. A similar Vega-Lite
example requires an extra transform pipeline with a lookup join and
derived calculation; the Mosaic version is simpler and more efficient.

Neuron Spike Data. Figure 15 shows a raster of electrical activity
measured by our neuroscience collaborators using a probe in a mouse
brain. Measurements of 384 sensor channels across 10.7M time points
(4.1B rows) are drawn from an 18GB Parquet file. To smoothly pan the
display, a tiled variant of the raster mark queries adjacent batches of
data using the Coordinator prefetch method.

Gaia Star Catalog. The Gaia star catalog is a sky survey of over
1.8B stars [15], from which we extracted selected columns into a
34GB Parquet file. Figure 1 visualizes all records with a raster
sky map, rectY histograms of magnitude and parallax, and a raster
Hertzsprung-Russell diagram of stellar color vs. magnitude. The map
uses the equal-area Hammer projection, performed in the database.
The views are linked by a crossfilter selection driven by interval
interactors, automatically optimized by data cube indexes.

8 PERFORMANCE BENCHMARKS

To further assess Mosaic, we conducted performance benchmarks ex-
amining both initial rendering and interactive update times. Unless
otherwise noted, we ran all benchmarks on a single MacBook Pro lap-
top (16-inch, 2021) with an Apple M1 Pro processor and 16GB RAM,
running MacOS 12.6 and Google Chrome 109.0.5414.119. Server-side
DuckDB (v0.6.1) instances used a standard configuration of all proces-
sor cores and a maximum of 80% RAM, with network communication
over a socket connection and Apache Arrow data transport.

8.1 Initial Chart Rendering

We first compare initial rendering times for Mosaic using either WASM
or a local server against Vega [35,36], VegaFusion [22], and Observable
Plot [4]. All tests use a synthetic dataset with four columns: an index
counter (i), a categorical variable of cardinality 20 (w), a uniform
random variable (u), and a random walk value (v). We vary the dataset
size from 10 thousand to 10 million rows.

We measure render times for six visualizations: bars of average v
grouped by w, a linear regression plot of v on i, a 2D histogram binned
on u and v, an area chart of v over i, and finally density contours and
hexbins over the domain of u and v. We chose these conditions to cover
both common visualization needs and a range of scalable visualization
types. Plots in the Vega condition are created using Vega-Lite [35],
except for density contours. Vega-Lite does not support contour plots so
we use Vega directly. As neither Vega nor Vega-Lite support hexagonal
binning, the Vega conditions omit the hexbins visualization.

Benchmark results are plotted in Figure 16. Vega and Observable
Plot scale similarly, but with a slight advantage for Plot. Plot renders
to SVG directly and does not have Vega’s overhead of constructing
a reactive dataflow graph and intermediate scenegraph. VegaFusion
performs server-side optimization for bars and 2D histograms only,
otherwise providing results identical to Vega.

Meanwhile, Mosaic roundly outperforms these tools, often by one
or more orders of magnitude. Mosaic WASM fares well at lower
data volumes, but at larger sizes is limited by WebAssembly’s lack
of parallel processing. DuckDB aggregate query performance drives
Mosaic’s improvements for the bars, regression, 2D histogram, and
density contours charts. The hexbins example benefits from the hexbin
mark expressing hexagonal binning calculations within a SQL query.

All non-Mosaic tools fail to render area charts of larger datasets, as
Chrome will not draw an SVG path with a million or more points. Here
the Mosaic area mark client’s use of M4 enables greater scale, as the
number of drawn points is a function of available screen pixels.

8.2 Interactive Updates

Next we assess interactive performance. We drop the Vega and Observ-
able Plot conditions, as Vega can not handle the dataset sizes tested and
Plot does not support interaction. We compare Mosaic using WASM, a
local server, and a remote server with 2 12-core 2.6 GHz Intel Xeon

Fig. 16: Initial rendering performance. Median times are shown, in-
terquartile ranges are smaller than the plotted dots. Mosaic provides
order-of-magnitude performance improvements over Vega or Observable
Plot for a range of visualizations. VegaFusion only optimizes the average
bars and 2D histogram conditions. Mosaic WASM does not scale as well
as a local server, in part due to the lack of parallel processing.

Fig. 17: Index construction (top) and interactive update performance (bot-
tom). Median times and interquartile ranges are shown. Mosaic server
configurations maintain interactive update rates at high data volumes,
though start to degrade as indexes for raster data become denser.

processors and 512GB RAM running Rocky Linux 9.1, accessed from
2 miles away over a WiFi router and fiber optic Internet connection.

We measure both data cube index creation and subsequent interactive
update times across three real-world applications: the flights dataset
(Figure 13), the Gaia star catalog (Figure 1), and a simplified Gaia
example (gaia-bins) that replaces high-resolution rasters with simpler
2D histograms (as in Falcon’s evaluation [31]). We vary dataset sizes
from millions to billions of rows. As our flights dataset has 10M rows,
we duplicate data to construct larger 100M and 1B row tables. For Gaia,
we use 0.1%, 1%, 10%, and 100% samples of the 1.8B row dataset.

Figure 17 plots the results. Server-based Mosaic instances provide
performant index construction (< 5 seconds for up to 200M records)
and interactive updates (100ms or faster). Network latency causes the
remote server to underperform until larger (100M+) dataset sizes, at
which point the additional memory and parallelism provide benefits.
Mosaic WASM runs out of memory for 1B flights and for Gaia samples
of 10% and up. We tested VegaFusion on the flights data only (VegaFu-
sion does not optimize density rasters). VegaFusion does not perform
indexing, leading to over 1 second latency at 100M. We attempted to
test 1B points, but canceled after 10 minutes passed with no updates.

Across Mosaic conditions, index creation time increases with dataset
size. These indexes optimize subsequent updates. In the Gaia raster
condition, update times begin to slow as the indexes for cross-filtering
between raster displays become large. Here the maximum possible data
cube size is 3.6B rows (300x200 interactive pixels times 300x200 raster
cells to render). In practice many fewer rows are needed due to sparsity;
nevertheless, index sparsity decreases as the dataset size increases.
Techniques that materialize a dense index, including imMens [25] and
Falcon [31], will run out of memory and fail at this scale. Mosaic
remains capable of providing an interactive experience.

9 DISCUSSION

Mosaic is a middle-tier architecture that coordinates interactive data-
driven components and scalable data stores. Mosaic Clients publish
data needs as declarative queries while interactions are coordinated via
dynamic Params and predicate-based Selections. The Mosaic Coordi-
nator mediates between client implementations and data management,
while performing automatic query optimization. We demonstrate inter-
active exploration of large-scale data using Mosaic-based input widgets
and vgplot, a grammar of interactive graphics. A range of examples
highlight Mosaic’s extensibility and interoperability, while performance
benchmarks show significant scalability and interactive performance
improvements over existing web-based visualization tools.

Whereas prior work on scalable visualization has largely contributed
individual techniques, Mosaic provides a framework that integrates
databases, query optimization, and an expressive set of visualization
abstractions within a unified system. The Mosaic Coordinator provides
automatic optimizations such as caching, query consolidation, and data
cube indexes, while individual clients can perform local optimizations

(such as M4 or Coordinator-assisted prefetching) based on known
visualization or interaction semantics. The vgplot library also illustrates
how many visualization transforms (including a variety of density
displays) can be implemented as database queries.

One limitation is the time required to build indexes for larger (500M+
row) datasets. Rather than assume a “cold start”, Mosaic also supports
index precomputation; at most a few minutes are needed for the full
Gaia catalog. Slower interactive updates are partially compensated by
Mosaic’s event throttling: one can interact in real-time (e.g., adjust
brushes) though the data may update after a short but noticeable delay.
As noted earlier, Mosaic also supports reducing interactive resolution
[31] to produce smaller data cubes that are faster to query.

Moreover, we have found it valuable to adjust the sample level
during exploration, navigating under low latency with a smaller sample,
then switching to a large sample to gain resolution and detail. In this
way, Mosaic leverages both sampling and binned aggregation akin to
Moritz et al.’s optimistic visualization [29]. Future work might add
more performant indexing or prefetching schemes (c.f., [27]).

While Observable Plot has proven a convenient renderer for vgplot,
it does not yet support incremental rendering, slowing updates involv-
ing many unchanged graphical elements. For fast drawing of 100k+
data points, future Mosaic clients could use hardware accelerated ren-
dering. In addition, operations such as graph layout and cartographic
transformations can be difficult or inefficient to implement in terms
of database queries. While they can instead be performed in-browser,
ultimately we would like to provide scalable support. As DuckDB is an
extensible, open source engine, future extensions might better support
GIS or specialized visualization workloads. Future Mosaic Coordinator
implementations could also federate query processing across standard
SQL databases and alternative engines.

A fundamental question here concerns how data transformation
and visual encoding are best partitioned among a database and clients
[30, 47]. In vgplot, most preparatory transformations are pushed to
the database while visual encoding is performed in-browser. This ap-
proach supports immediate changes of color encodings and even kernel
smoothing without querying the database. However, the distinction
between transformation and encoding is not always clear cut. To per-
form hexagonal binning, the hexbin mark query performs a screen
space mapping and then maps back to data space for consistency and
integration with Observable Plot. Cartographic projection is particu-
larly challenging, as not all projections are invertible, preventing scale
inversion from screen space to data space. For projected maps, linked
selection queries are better supported using post-projection coordinates,
as in the Gaia example of Figure 1. Future efforts might more flexibly
partition “encoding” transforms between the database and browser.

Going forward, we hope that Mosaic can serve as an open platform
to develop and deploy scalable, interactive data exploration methods.
We carefully designed the Mosaic Coordinator to decouple component
implementations from data management, with the goal of making it
easier for database specialists and visualization/UI specialists to con-
tribute to separate parts of the system. Mosaic can be extended with
new client components (or entire component libraries), while vgplot
can be extended with new marks or interactors, as is appropriate.

One area of future work is to further integrate Mosaic with other
systems. Figure 12 shows a proof-of-concept integration with Vega-
Lite; more effort is needed to develop an alternative Vega-Lite parser
that provides automatic Mosaic integration. Meanwhile, visualization
generation systems such as PI2 [12] or coordination specifications such
as Nebula [11] might be adapted to leverage Mosaic.

As previously noted, Mosaic can serve as a testbed for improved
query caching, indexing, and other optimization methods. By logging
queries and selections, Mosaic can also assist empirical research into
data exploration workloads and user modeling [5, 6]. Given its use
of declarative specification, Mosaic could serve as a target for future
visualization reasoning and recommender systems (such as Draco [32]
and Voyager [46]), including new automated reasoning rules for high-
volume data. Mosaic, vgplot, and all corresponding components are
available as open source software at uwdata.github.io/mosaic.

https://uwdata.github.io/mosaic

ACKNOWLEDGMENTS

We thank the UW Interactive Data Lab for their suggestions and feed-
back. This work was supported by the Moore Foundation.

REFERENCES

[1] Apache Arrow. https://arrow.apache.org/. 3
[2] Glue: multi-dimensional linked-data exploration. https://glueviz.org/. 2
[3] Observable Inputs. https://github.com/observablehq/inputs. 4
[4] Observable Plot. https://github.com/observablehq/plot. 1, 2, 4, 5, 8
[5] L. Battle, R. Chang, and M. Stonebraker. Dynamic Prefetching of Data

Tiles for Interactive Visualization. In Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016. doi: 10.1145/2882903.
2882919 2, 9

[6] L. Battle, P. Eichmann, M. Angelini, T. Catarci, G. Santucci, Y. Zheng,
C. Binnig, J.-D. Fekete, and D. Moritz. Database Benchmarking for
Supporting Real-Time Interactive Querying of Large Data. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of
Data. ACM, 2020. doi: 10.1145/3318464.3389732 9

[7] L. Battle and C. Scheidegger. A Structured Review of Data Management
Technology for Interactive Visualization and Analysis. IEEE Transactions
on Visualization and Computer Graphics, 27(2):1128–1138, 2021. doi: 10
.1109/tvcg.2020.3028891 1

[8] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011. doi: 10.1109/tvcg.2011.185 1

[9] Bureau of Transportation Statistics. On-Time Performance.
https://www.bts.gov/. 8

[10] D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scat-
terplot Matrix Techniques for LargeN. Journal of the American Statisti-
cal Association, 82(398):424–436, 1987. doi: 10.1080/01621459.1987.
10478445 2

[11] R. Chen, X. Shu, J. Chen, D. Weng, J. Tang, S. Fu, and Y. Wu. Nebula: A
Coordinating Grammar of Graphics. IEEE Transactions on Visualization
and Computer Graphics, 28(12):4127–4140, 2022. doi: 10.1109/tvcg.
2021.3076222 2, 9

[12] Y. Chen and E. Wu. Pi2: End-to-end Interactive Visualization Interface
Generation from Queries. In Proceedings of the 2022 International Con-
ference on Management of Data. ACM, 2022. doi: 10.1145/3514221.
3526166 9

[13] F. C. Crow. Summed-area tables for texture mapping. ACM SIGGRAPH
Computer Graphics, 18(3):207–212, 1984. doi: 10.1145/964965.808600
7

[14] R. Deriche. Recursively implementing the Gaussian and its derivatives.
Tech Report, INRIA, 1993. 5

[15] Gaia Collaboration, A. Vallenari, A. G. A. Brown, and 453 others. Gaia
Data Release 3: Summary of the content and survey properties. 2022. doi:
10.48550/arXiv.2208.00211 8

[16] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data mining
and knowledge discovery, 1:29–53, 1997. 2, 6

[17] J. Heer. Fast & Accurate Gaussian Kernel Density Estimation. In 2021
IEEE Visualization Conference (VIS). IEEE, 2021. doi: 10.1109/vis49827.
2021.9623323 2, 5

[18] M. C. Jones and H. W. Lotwick. On the errors involved in computing the
empirical characteristic function. Journal of Statistical Computation and
Simulation, 17(2):133–149, 1983. doi: 10.1080/00949658308810650 5

[19] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4. Proceedings
of the VLDB Endowment, 7(10):797–808, 2014. doi: 10.14778/2732951.
2732953 2, 5

[20] A. Kohn, D. Moritz, and T. Neumann. Dashql – Complete Analysis
Workflows with SQL. 2023. doi: 10.48550/ARXIV.2306.03714 2, 5

[21] A. Kohn, D. Moritz, M. Raasveldt, H. Mühleisen, and T. Neumann.
Duckdb-wasm. Proceedings of the VLDB Endowment, 15(12):3574–3577,
2022. doi: 10.14778/3554821.3554847 3

[22] N. Kruchten, J. Mease, and D. Moritz. Vegafusion: Automatic Server-Side
Scaling for Interactive Vega Visualizations. In 2022 IEEE Visualization
and Visual Analytics (VIS). IEEE, 2022. doi: 10.1109/vis54862.2022.
00011 2, 8

[23] O. D. Lampe and H. Hauser. Curve Density Estimates. Computer Graphics
Forum, 30(3):633–642, 2011. doi: 10.1111/j.1467-8659.2011.01912.x 2,
5

[24] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for Real-Time
Exploration of Spatiotemporal Datasets. IEEE Transactions on Visualiza-
tion and Computer Graphics, 19(12):2456–2465, 2013. doi: 10.1109/tvcg.
2013.179 2

[25] Z. Liu, B. Jiang, and J. Heer. imMens: Real-time Visual Querying of
Big Data. Computer Graphics Forum, 32(3pt4):421–430, 2013. doi: 10.
1111/cgf.12129 2, 7, 9

[26] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic,
S. Lawande, J. Myllymaki, and K. Wenger. Devise. ACM SIGMOD
Record, 26(2):301–312, 1997. doi: 10.1145/253262.253335 2

[27] H. Mohammed, Z. Wei, E. Wu, and R. Netravali. Continuous prefetch
for interactive data applications. Proceedings of the VLDB Endowment,
13(12):2297–2311, 2020. doi: 10.14778/3407790.3407826 2, 9

[28] D. Moritz and D. Fisher. Visualizing a Million Time Series with the
Density Line Chart. 2018. doi: 10.48550/ARXIV.1808.06019 2, 5

[29] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but Verify: Optimistic
Visualizations of Approximate Queries for Exploring Big Data. In Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. ACM, 2017. doi: 10.1145/3025453.3025456 9

[30] D. Moritz, J. Heer, and B. Howe. Dynamic Client-Server Optimization for
Scalable Interactive Visualization on the Web. In IEEE VIS Data Systems
for Interactive Analysis (DSIA) Workshop. Chicago, IL, 2015. 9

[31] D. Moritz, B. Howe, and J. Heer. Falcon. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. ACM, 2019. doi:
10.1145/3290605.3300924 2, 7, 9

[32] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing Visualization Design Knowledge as Constraints:
Actionable and Extensible Models in Draco. IEEE Transactions on Visual-
ization and Computer Graphics, 25(1):438–448, 2019. doi: 10.1109/tvcg.
2018.2865240 9

[33] C. North and B. Shneiderman. Snap-together visualization. In Proceedings
of the working conference on Advanced visual interfaces. ACM, 2000. doi:
10.1145/345513.345282 2

[34] M. Raasveldt and H. Mühleisen. Duckdb. In Proceedings of the 2019
International Conference on Management of Data. ACM, 2019. doi: 10.
1145/3299869.3320212 2, 3

[35] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2017. doi: 10.1109/tvcg.2016.
2599030 1, 2, 3, 4, 6, 8

[36] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: A
Streaming Dataflow Architecture for Declarative Interactive Visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, 2016. doi: 10.1109/tvcg.2015.2467091 1, 2, 3, 8

[37] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for query, analysis,
and visualization of multidimensional relational databases. IEEE Transac-
tions on Visualization and Computer Graphics, 8(1):52–65, 2002. doi: 10.
1109/2945.981851 2

[38] W. Tao, X. Hou, A. Sah, L. Battle, R. Chang, and M. Stonebraker. Kyrix-S:
Authoring Scalable Scatterplot Visualizations of Big Data. IEEE Transac-
tions on Visualization and Computer Graphics, 27(2):401–411, 2021. doi:
10.1109/tvcg.2020.3030372 2

[39] W. Tao, X. Liu, Y. Wang, L. Battle, Ç. Demiralp, R. Chang, and M. Stone-
braker. Kyrix: Interactive Pan/Zoom Visualizations at Scale. Computer
Graphics Forum, 38(3):529–540, 2019. doi: 10.1111/cgf.13708 2

[40] J. VanderPlas, B. Granger, J. Heer, D. Moritz, K. Wongsuphasawat,
A. Satyanarayan, E. Lees, I. Timofeev, B. Welsh, and S. Sievert. Al-
tair: Interactive Statistical Visualizations for Python. Journal of Open
Source Software, 3(32):1057, 2018. doi: 10.21105/joss.01057 6

[41] M. P. Wand. Fast Computation of Multivariate Kernel Estimators. Journal
of Computational and Graphical Statistics, 3(4):433, 1994. doi: 10.2307/
1390904 2, 5

[42] C. Weaver. Building Highly-Coordinated Visualizations in Improvise. In
IEEE Symposium on Information Visualization. IEEE. doi: 10.1109/infvis.
2004.12 2, 3

[43] H. Wickham. A Layered Grammar of Graphics. Journal of Computational
and Graphical Statistics, 19(1):3–28, 2010. doi: 10.1198/jcgs.2009.07098
1, 2, 4

[44] H. Wickham. Bin-summarise-smooth: A framework for visualising large
data. Tech Report, 2013. 2

[45] L. Wilkinson. The Grammar of Graphics, pp. 375–414. Springer Berlin
Heidelberg, 2011. doi: 10.1007/978-3-642-21551-3_13 2, 4

[46] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and

https://arrow.apache.org/
https://glueviz.org/
https://github.com/observablehq/inputs
https://github.com/observablehq/plot
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/2882903.2882919
https://doi.org/10.1145/3318464.3389732
https://doi.org/10.1109/tvcg.2020.3028891
https://doi.org/10.1109/tvcg.2020.3028891
https://doi.org/10.1109/tvcg.2011.185
https://www.bts.gov/
https://doi.org/10.1080/01621459.1987.10478445
https://doi.org/10.1080/01621459.1987.10478445
https://doi.org/10.1109/tvcg.2021.3076222
https://doi.org/10.1109/tvcg.2021.3076222
https://doi.org/10.1145/3514221.3526166
https://doi.org/10.1145/3514221.3526166
https://doi.org/10.1145/964965.808600
https://doi.org/10.48550/arXiv.2208.00211
https://doi.org/10.48550/arXiv.2208.00211
https://doi.org/10.1109/vis49827.2021.9623323
https://doi.org/10.1109/vis49827.2021.9623323
https://doi.org/10.1080/00949658308810650
https://doi.org/10.14778/2732951.2732953
https://doi.org/10.14778/2732951.2732953
https://doi.org/10.48550/ARXIV.2306.03714
https://doi.org/10.14778/3554821.3554847
https://doi.org/10.1109/vis54862.2022.00011
https://doi.org/10.1109/vis54862.2022.00011
https://doi.org/10.1111/j.1467-8659.2011.01912.x
https://doi.org/10.1109/tvcg.2013.179
https://doi.org/10.1109/tvcg.2013.179
https://doi.org/10.1111/cgf.12129
https://doi.org/10.1111/cgf.12129
https://doi.org/10.1145/253262.253335
https://doi.org/10.14778/3407790.3407826
https://doi.org/10.48550/ARXIV.1808.06019
https://doi.org/10.1145/3025453.3025456
https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1109/tvcg.2018.2865240
https://doi.org/10.1109/tvcg.2018.2865240
https://doi.org/10.1145/345513.345282
https://doi.org/10.1145/345513.345282
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2015.2467091
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/tvcg.2020.3030372
https://doi.org/10.1109/tvcg.2020.3030372
https://doi.org/10.1111/cgf.13708
https://doi.org/10.21105/joss.01057
https://doi.org/10.2307/1390904
https://doi.org/10.2307/1390904
https://doi.org/10.1109/infvis.2004.12
https://doi.org/10.1109/infvis.2004.12
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1007/978-3-642-21551-3_13

J. Heer. Voyager: Exploratory Analysis via Faceted Browsing of Visualiza-
tion Recommendations. IEEE Transactions on Visualization and Computer
Graphics, 22(1):649–658, 2016. doi: 10.1109/tvcg.2015.2467191 9

[47] E. Wu, L. Battle, and S. R. Madden. The case for data visualization
management systems. Proceedings of the VLDB Endowment, 7(10):903–
906, 2014. doi: 10.14778/2732951.2732964 9

[48] Y. Wu, R. Chang, J. M. Hellerstein, A. Satyanarayan, and E. Wu. Diel:
Interactive Visualization Beyond the Here and Now. IEEE Transactions
on Visualization and Computer Graphics, 28(1):737–746, 2022. doi: 10.
1109/tvcg.2021.3114796 2

[49] J. Yang, H. K. Joo, S. S. Yerramreddy, S. Li, D. Moritz, and L. Bat-
tle. Demonstration of VegaPlus: Optimizing Declarative Visualization
Languages. In Proceedings of the 2022 International Conference on
Management of Data. ACM, 2022. doi: 10.1145/3514221.3520168 2

https://doi.org/10.1109/tvcg.2015.2467191
https://doi.org/10.14778/2732951.2732964
https://doi.org/10.1109/tvcg.2021.3114796
https://doi.org/10.1109/tvcg.2021.3114796
https://doi.org/10.1145/3514221.3520168

A QUERY GENERATION & DATE CUBE INDEXES

Here we further detail how vgplot mark clients generate queries and
how the Coordinator performs data cube indexing.

A.1 Basic Marks
Each vgplot mark is as a Mosaic client that generates queries. The Co-
ordinator invokes the client query()method and manages the returned
query. Basic mark types use a straightforward query generation proce-
dure. For example, consider a standard scatter plot (dot mark) with
x, y, and r (radius size) encodings. For a backing data table $table
and corresponding table columns denoted as $u, $v, and $w, the mark
query() method returns a query that selects the data directly:

SELECT $u AS x, $v AS y, $w AS r
FROM $table

Subsequent visual encoding—such as mapping the data through scale
transforms—is performed in the browser. Mark clients may also have
a filterBy Selection property, which if set, is used to generate a
predicate that is passed as the filter argument to the mark query()
method. For basic marks, the filter predicate is appended as a SQL
WHERE clause. Given an interval selection for column $b over the
domain [$b0, $b1], the following query is produced:

SELECT $u AS x, $v AS y, $w AS r
FROM $table
WHERE $b BETWEEN $b0 AND $b1

If a mark encoding involves an aggregate operation, the non-aggregated
fields are included as SQL GROUP BY criteria. Consider a bar chart
(barY mark) that, for an ordinal column $a on the x-axis, shows the
average values of columnn $b on the y-axis:

SELECT $a AS x, AVG($b) AS y
FROM $table
GROUP BY $a

A.2 Connected Marks and M4 Optimization
Connected marks such as lineX/Y and areaX/Y can be further opti-
mized. Consider the area charts in Figure 7. For a table $table with
column $t visualized along the x-axis and column $v along the y-axis,
the basic query generation method above would select all data points:

SELECT $t AS x, $v AS y
FROM $table
ORDER BY x

We can do better by applying shape-preserving, pixel-aware binning
using the M4 method [19]. For a given chart pixel width $w and
minimum and maximum plotted $t values $t0 and $t1, the optimized
query used by Mosaic takes the form:

SELECT MIN($t) AS x, ARG_MIN($v, $t) AS y
FROM $table
GROUP BY FLOOR($w * (x - $t0) / ($t1 - $0))
UNION
SELECT MAX($t) AS x, ARG_MAX($v, $t) AS y
FROM $table
GROUP BY FLOOR($w * (x - $t0) / ($t1 - $0))
UNION
SELECT ARG_MIN($t, $v) AS x, MIN($v) AS y
FROM $table
GROUP BY FLOOR($w * (x - $t0) / ($t1 - $0))
UNION
SELECT ARG_MAX($t, $v) AS x, MAX($v) AS y
FROM $table
GROUP BY FLOOR($w * (x - $t0) / ($t1 - $0))
ORDER BY x

For each pixel, M4 selects the extremal $t and $v values—two mini-
mums and two maximums, hence “M4”. The resulting output data has
at most four points per pixel. We use the “AM4” variant of M4 [20],
which uses ARG_MIN and ARG_MAX aggregates to select a matching
co-ordinate for each extremum.

A.3 Linear Binning
The densityX and densityYmarks visualize kernel density estimates.
To produce these estimates in a scalable manner, we use an approxi-
mation that first bins the data points into a grid. We perform linear
binning [18, 41] in the database to make the approximation more ac-
curate [17]. Linear binning proportionally distributes the weight of
a point between adjacent bins. If a data point xi lies between bins
with midpoints b0 and b1, linear binning assigns weight proportional to
(b1 � xi)/(b1 �b0) to bin b0 and (xi �b0)/(b1 �b0) to bin b1.

To bin column $v linearly into $n bins over the domain [$v0, $v1],
we use a query with two subqueries—one for the “left” bin and one for
the “right” bin—and aggregate the results of their union:

SELECT index, SUM(weight) AS weight
FROM (
SELECT
($n - 1) * ($v - $v0) / ($v1 - $v0) AS p,
FLOOR(p) AS index,
index + 1 - p AS weight
FROM $table
UNION ALL
SELECT
($n - 1) * ($v - $v0) / ($v1 - $v0) AS p,
FLOOR(p) + 1 AS index,
p - index - 1 AS weight
FROM $table

)
GROUP BY index
HAVING weight > 0

The return value is a one-dimensional grid of binned values, with an in-
teger index and corresponding weight. To generate two-dimensional
densities, we perform linear binning in 2D using an analogous proce-
dure involving four subqueries. Subsequent smoothing is performed
in the browser using Deriche’s linear time approximation [14, 17],
allowing rapid updates upon change of kernel bandwidth.

A.4 Binned Aggregation and Data Cube Indexes
Figure 13 shows three histograms with cross-filtering interactions. For
each histogram (rectY mark), we use a bin transform on the x en-
coding channel and a count aggregate for the y channel. The bin
transform provides an expression generator function that is called by
the basic mark query generation procedure. The query for a single
histogram of column $v over the domain [$v0, $v1] is:

SELECT
$v0 + $step * FLOOR(($v - $v0) / $step) AS x1,
$v0 + $step * (FLOOR(($v - $v0) / $step) + 1) AS x2,
COUNT(*) AS y

FROM $table
GROUP BY x1, x2

To cross-filter, each mark has a filterBy Selection that produces
predicates driven by selection brushes (intervalX interactors). As
above, the default query generation procedure adds those predicates to
a SQL WHERE clause. For an interval brush selection [$b0, $b1] over
the column $u, the resulting query for a cross-filtered histogram is:

SELECT
$v0 + $step * FLOOR(($v - $v0) / $step) AS x1,
$v0 + $step * (FLOOR(($v - $v0) / $step) + 1) AS x2,
COUNT(*) AS y

FROM $table
WHERE $u BETWEEN $b0 AND $b1
GROUP BY x1, x2

If data cube indexing is enabled, these queries are automatically opti-
mized by the Coordinator, in a fashion completely decoupled from the
mark itself. If generated queries involve group-by aggregation using
supported aggregate functions (currently count, sum, avg, min, and
max), the Coordinator will rewrite the query to create a multivariate
data tile [25]. The result is stored in the database as a new table. The

table name includes a hash of the SQL query string that creates the
table, enabling easy reuse. If the table already exists it is not re-created.

For an interval selection over the column $u, the Coordinator uses
the number of $pixels and the minimum and maximum possible brush
values in the data domain [$bmin, $bmax] to produce pixel-level bins
for all possible brush positions. The following query creates a data
cube for brush interactions between a one-dimensional active selection
clause and a single histogram:

CREATE TEMP TABLE IF NOT EXISTS cube_index_a097caa4 AS
SELECT
$v0 + $step * FLOOR(($v - $v0) / $step) AS x1,
$v0 + $step * (FLOOR(($v - $v0) / $step) + 1) AS x2,
COUNT(*) AS y,
FLOOR($pixels * ($u - $bmin) / ($bmax - $bmin)) AS activeX

FROM $table
GROUP BY x1, x2, activeX

Upon selection updates, the Coordinator issues queries to the data
cube index rather than use the basic filtered query described previously.
Given data-space brush endpoints $b0 and $b1, the index query is:

SELECT x1, x2, SUM(y)
FROM cube_index_a097caa4
WHERE activeX BETWEEN
FLOOR($pixels * ($b0 - $bmin) / ($bmax - $bmin)) AND
FLOOR($pixels * ($b1 - $bmin) / ($bmax - $bmin))
GROUP BY x1, x2

The size of the data cube is bound by the number of bins (binned $v
steps and the number of $pixels), not the size of the input data. As a
result, for large datasets the data cube index queries can be computed
substantially faster [25, 31]. Two-dimensional brushes are handled
similarly, resulting in both activeX and activeY index columns.

Data cube indexes can be created for complex queries involving
subqueries or common table expressions (CTEs). In such cases, the
Coordinator walks the query tree and performs pushdown of active
selection columns. In the densityY query below, the column $u is
pushed down into the subqueries and then pixel-binned by the outer
query. Subsequent index queries thus amortize the cost of both interac-
tive updates and the original, complex aggregation.

CREATE TEMP TABLE IF NOT EXISTS cube_index_b0d4fe30 AS
SELECT
index, SUM(weight) AS weight,
FLOOR($pixels * ($u - $bmin) / ($bmax - $bmin)) AS activeX

FROM (
SELECT
($n - 1) * ($v - $v0) / ($v1 - $v0) AS p,
FLOOR(p) AS index,
index + 1 - p AS weight,
$u
FROM $table
UNION ALL
SELECT
($n - 1) * ($v - $v0) / ($v1 - $v0) AS p,
FLOOR(p) + 1 AS index,
p - index - 1 AS weight,
$u
FROM $table

)
GROUP BY index, activeX
HAVING weight > 0

A.5 Line Density
Density mark calculations can use either the linear binning method
described above or standard binning, in which the “mass” of point is
allocated to a single bin only. However, these methods apply to point
data only. Density line charts [28] and curve density estimates [23]
instead show densities for series, not just individual data points. The
denseLine mark subclasses vgplot’s raster mark, generating an
alternative query that performs line rasterization and normalization in
the database to produce line densities.

As shown below, the generated query is complex and consists of mul-
tiple processing steps specified as common table expressions (CTEs).
The key steps are: (1) bin data points to raster grid coordinates (source
subquery), (2) identify line segments as start points and delta offsets
(pairs subquery), (3) compute integer indices up to the maximum line
segment run or rise (in raster bins, indices subquery), (4) join the line
segments and indices to perform line rasterization (raster subquery),
(5) normalize column weights for each series to approximate arc-length
normalization [28] (points subquery), and (6) aggregate all density
values into an output grid (outer query).

WITH
source AS (-- 1. source data, bin x and y
SELECT
FLOOR(($x - $x0) * ($nx - 1) / ($x1 - $x0)) AS x
FLOOR(($y - $y0) * ($ny - 1) / ($y1 - $y0)) AS y,
$z AS z,

FROM $table
),
pairs AS (-- 2. form line segments: start point + offsets
SELECT
z, x AS x0, y AS y0,
LEAD(x) OVER w - x AS dx,
LEAD(y) OVER w - y AS dy

FROM source
WINDOW w AS (PARTITION BY z ORDER BY x ASC)
),
indices AS (-- 3. integer indices up to the max rise or run
SELECT UNNEST(
range(
SELECT GREATEST(MAX(ABS(dx)), MAX(ABS(dy)))
FROM pairs

)
) AS i
),
raster AS (-- 4. perform line rasterization
SELECT -- case where run is greater than rise
z,
x0 + i AS x,
y0 + ROUND(i * dy / dx) AS y
FROM pairs, indices
WHERE ABS(dy) <= ABS(dx) AND i < ABS(dx)
UNION ALL
SELECT -- case where rise is greater than run
z,
x0 + ROUND(SIGN(dy) * i * dx / dy) AS x,
y0 + SIGN(dy) * i AS y
FROM pairs, indices
WHERE ABS(dy) > ABS(dx) AND i < ABS(dy)
UNION ALL
SELECT -- case of final line segment end point (no offsets)
z, x0 AS x, y0 AS y
FROM "pairs" WHERE dx IS NULL

),
points AS (-- 5. perform per-column, per-series normalization
SELECT
x, y
1.0 / COUNT(*) OVER (PARTITION BY x, z) AS w

FROM raster
WHERE (x BETWEEN $x0 AND $x1) AND (y BETWEEN $y0 AND $y1)
)
SELECT -- 6. sum normalized weights from all series
x + y * $width AS index,
SUM(w) AS weight

FROM points
GROUP BY index

In the query above, $x and $y correspond to input columns mapped to
spatial dimensions (over the domains [$x0, $x1] and [$y0, $y1]),
while $z is a categorical variable indicating different line series and
$width is the width of the output grid in raster cells. The resulting grid
of line densities can optionally be smoothed in the browser, using the
inherited functionality of the raster mark.

B ADDITIONAL EXAMPLES

Here we share additional examples of Mosaic applications, supplement-
ing the examples presented in §7.

B.1 Neuron Spike Measurements

Fig. 18: Time-series heatmap of neuron spike activity along a probe.

We apply Mosaic to data from neuroscience collaborators. Figure 15
shows raw electrical data, which is important to visualize in order
to assess potential errors of subsequent analysis algorithms. Here,
Figure 18 is a raster density map of algorithmically extracted neuron
spikes from a single experimental run, consisting of 8.3M rows in a
95MB Parquet file. A panZoom interactor enables real-time panning
and zooming.

Our collaborators were excited that we were able to write Mosaic
code within just a few minutes to visualize and interact with their
data. Their current workflow involves long-running batch processes to
generate static images for each experimental session. With Mosaic, we
are able to provide real-time interactive visualizations on-demand. We
are now working jointly on richer dashboards for examining the results
across many experimental runs.

B.2 X-Ray Scatter Images

Fig. 19: An X-ray beam pointed at a sample (right) creates a scattering
pattern (left). Selecting a region of the sample shows pronounced rings
in the scattering image.

Here Mosaic visualizes data from beamline X-ray scattering experi-
ments that help understand physical materials’ properties. Figure 19
shows a scatter image (left) and the position of the X-ray beam on
the sample (right). Scientists can see the aggregated scattering image
for a region by selecting regions of the sample. The data collected
at Brookhaven National Lab shows scatter images of a coffee stain
with 1,776 scatter images in this dataset resulting in 1.9B data points.
While updates are real-time, similar to the 100% sample Gaia raster

case in our benchmarks (§8.2), index creation is not ideally interactive.
Precomputation of indexes amortizes this cost, enabling immediate
interaction in subsequent sessions.

B.3 Zoomable Gaia Sky Map

Fig. 20: An overview+detail configuration of the Gaia sky map. Selecting
a small region of the sky (top) resolves the Andromeda galaxy (bottom).

In addition to the Gaia dashboard of Figure 1, we built the alternative
overview+detail sky map shown in Figure 20. Rather than apply a
cartographic projection, here the original right ascension (ra) and
declination (dec) coordinates are plotted directly. Brushing in the
overview region produces a zoomed-in view in the detail panel. A
patch of sky is selected in Figure 20 (top), revealing the Andromeda
galaxy (bottom).

	Introduction
	Related Work
	Scalable Visualization
	Visualization Languages and Tools

	The Mosaic Architecture
	Clients
	Coordinator
	Data Source
	Params and Selections
	Extensibility and Interoperability

	Mosaic Input Components
	vgplot: An Interactive Visualization Grammar
	Plot Elements
	Declarative Specification

	Coordinator Optimizations
	Query Caching, Consolidation, and Prefetching
	Data Cube Indexes

	Examples
	Performance Benchmarks
	Initial Chart Rendering
	Interactive Updates

	Discussion

