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Fig. 1: A Mosaic-based interface for interactive visual exploration of all 1.8 billion stars in the Gaia star catalog. A high-resolution 
density map of the sky reveals our Milky Way and satellite galaxies. Stars with higher parallax values are interactively selected, forming 
a Hertzsprung-Russell diagram of color versus stellar magnitude on the right. Mosaic offloads density and histogram computation to a 
backing scalable database, and automatically builds optimized data cube indexes to support interactive linked views. 

Abstract—Mosaic is an architecture for greater scalability, extensibility, and interoperability of interactive data views. Mosaic decouples 
data processing from specification logic: clients publish their data needs as declarative queries that are then managed and automatically 
optimized by a coordinator that proxies access to a scalable data store. Mosaic generalizes Vega-Lite’s selection abstraction to enable 
rich integration and linking across visualizations and components such as menus, text search, and tables. We demonstrate Mosaic’s 
expressiveness, extensibility, and interoperability through examples that compose diverse visualization, interaction, and optimization 
techniques—many constructed using vgplot, a grammar of interactive graphics in which graphical marks act as Mosaic clients. To 
evaluate scalability, we present benchmark studies with order-of-magnitude performance improvements over existing web-based 
visualization systems—enabling flexible, real-time visual exploration of billion+ record datasets. We conclude by discussing Mosaic’s 
potential as an open platform that bridges visualization languages, scalable visualization, and interactive data systems more broadly. 
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1 INTRODUCTION 

Though many expressive visualization tools exist, scalability to large 
datasets and interoperability across tools remain challenging [7]. The 
visualization community lacks open, standardized tools for integrating 
visualization specifications with scalable analytic databases. While 
libraries like D3 [8] embrace Web standards for cross-tool interoper-
ability, higher-level frameworks often make closed-world assumptions, 
complicating integration with other tools and environments. 

As a concrete example, consider the Vega [36] and Vega-Lite [35] 
ecosystem. By default, data transformations are performed within a 
JavaScript runtime, limiting scalability due to both data movement 
and a lack of parallel computing. Meanwhile, other architectural deci-
sions impede extensibility and interoperability. Vega-Lite’s selection 
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abstraction provides a powerful, concise model for interaction, yet is 
realized in terms of opaque internal Vega constructs that complicate 
coordination with external components and environments such as note-
books. As a result, online requests1 for table views, data-driven input 
widgets, more interoperable selections, and new mark types (e.g., for 
raster heatmaps and contour plots in Vega-Lite) have gone unaddressed 
for years. Other tools face similar limitations [4, 43]. 

We propose a standardized “middle-tier” architecture that mediates 
data-driven components and backing data sources. A common layer 
between databases and components can coordinate linked selections 
and parameters among views, while providing automatic query opti-
mizations for greater scalability. We focus on the Web browser as 
the primary site of rendering and interaction, and seek to coordinate 
diverse components via standard protocols for communicating data 
needs, dynamic parameters, and linked selection criteria. 

We contribute Mosaic, an architecture for interoperable, data-driven 
components—including visualizations, tables, and input widgets— 
backed by scalable data stores. A key idea of Mosaic is to decouple 
data processing from specification. Mosaic Clients communicate their 
data needs as declarative queries. A central Coordinator manages these 
queries, applies automatic optimizations, and pushes processing to a 

1See github.com/vega/vega/issues/ and github.com/vega/vega-lite/issues/ 
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backing Data Source (by default DuckDB [34]). Dynamic Params and 
Selections enable coordinated updates to both clients and queries to 
support linked interaction. A variety of components and toolkits can 
interoperate via Mosaic’s data management and selection facilities. 

A main contribution of Mosaic is to unify the abstractions of popular 
visualization toolkits with scalable visualization techniques. Individ-
ual clients may perform local optimization in their generated queries. 
Meanwhile, the Mosaic Coordinator optimizes over multiple views 
and interaction cycles by caching, consolidating similar queries, and 
building data cube indexes for linked selections over aggregated data. 
We present a novel indexing approach that extends prior work on im-
Mens [25] and Falcon [31] to support automatic index generation over 
a larger set of query types and aggregation functions. Mosaic also en-
ables flexible deployment: using DuckDB and varied data connectors, 
Mosaic can process data directly in the browser via WebAssembly, 
within a Jupyter Notebook kernel, or on local or remote servers. 

We demonstrate Mosaic’s extensibility and interoperability by de-
veloping both data-driven input widgets and vgplot, a grammar of in-
teractive graphics in which graphical marks are Mosaic clients. Marks 
in vgplot push filtering, binning, aggregation, and regression trans-
formations to a backing database. Interactors for pan/zoom, point, 
and interval selections produce dynamic queries mediated by Mosaic 
Params and Selections. Akin to Vega-Lite, Mosaic users can write 
portable, declarative specifications that can be generated by various 
languages and integrated in computational notebooks. 

To assess scalability, we present benchmark results for both static 
and interactive visualizations. Mosaic outperforms Vega, VegaFusion, 
and Observable Plot, typically by one or more orders of magnitude. For 
the static cases, DuckDB performance and client-level optimization 
account for the bulk of Mosaic’s benefits. In the interactive cases, 
Mosaic’s automatic data cube indexing enables real-time interaction 
with billion+ record datasets. We conclude by discussing limitations 
and Mosaic’s use as a platform for research and development. 

2 RELATED WORK 

Mosaic seeks to unify prior work on scalable visualization methods 
with expressive languages and tools for interactive visualization. 

2.1 Scalable Visualization 

Methods for scaling visualizations to larger datasets include sampling, 
fitting parametric models, and binned aggregation (potentially with 
smoothing). While valuable, both sampling and modeling are lossy, 
and so may fail to preserve structures and outliers of interest. Carr et 
al. [10] describe scalable scatter plot methods using hexagonal binning. 
Later works, including imMens [25] and Wickham’s bin-summarise-
smooth framework [44], further describe how to scale up a variety of 
common plots via binned aggregation. Density, violin, and contour 
plots can be constructed by smoothing binned counts [17, 41]. To scale 
traditional line or area charts, M4 [19, 20] uses a pixel-aware binning 
scheme that is visually identical to normal line rasterization. While 
many techniques focus on binning individual data points, Curve Density 
Estimates [23] and DenseLines [28] instead convey rendered densities 
for many series drawn as lines or curves. Mosaic provides an expressive 
and extensible system to develop and flexibly deploy such techniques. 

Other methods focus on interactive visualization, supporting effi-
cient updates for filtering and (re-)aggregation. Nanocubes [24] are 
specialized indexes for spatio-temporal queries, but can take consider-
able time to build. imMens [25] and Falcon [31] use multivariate data 
tiles: pre-aggregated data cubes [16] that can be rapidly queried to com-
pute filtered aggregates, making interactive performance dependent on 
a chosen binning resolution rather than the number of backing records. 
Falcon also performs prefetching by requesting tiles when the mouse 
cursor enters a plot, prior to any selections. ForeCache [5] prefetches 
data tiles for multi-scale pan/zoom operations based on a model of user 
navigation behavior. Khameleon [27] streams approximate data tiles 
with a scheduler that trades off result quality and available bandwidth. 

The Mosaic architecture supports indexing, prefetching, and other 
optimizations. Most notably, Mosaic’s Coordinator analyzes client 
queries and linked selections to determine if pre-aggregated indexes are 

applicable; if so, it prefetches data cubes automatically. In contrast to 
prior work, our implementation supports aggregations beyond count 
(e.g., sum, avg, min, max), uses sparse indexes that scale to larger 
datasets, and caches data cubes in a backing database for reuse. 

Kyrix [39] provides an API for scalable zoomable user interfaces, 
including precomputation of spatial positions and indexes within a 
backing database to support low-latency interaction. Kyrix-S [38] 
extends Kyrix with additional operators and a declarative specification 
syntax for scatter plot visualizations. Mosaic differs in providing a 
more general and extensible architecture (e.g., one could implement 
Kyrix-like systems using Mosaic) and in its use of reactive parameters 
and selections to coordinate interactive updates. Meanwhile, DIEL 
[48] orchestrates computation between local and remote databases. In 
contrast to Mosaic’s reusable higher-level abstractions, DIEL requires 
writing application-specific queries and library integrations. 

2.2 Visualization Languages and Tools 

Commercial systems, including Tableau (previously Polaris [37]) and 
business intelligence tools, support visualizations backed by databases. 
However, the techniques used by these systems are proprietary, rarely 
published, and unavailable for researchers to freely use and extend. 

Multiple research systems focus on linked interactions across views. 
Snap-Together visualization [33] and DEVise [26] support coordinated 
views based on a relational data model. Users of Glue [2] provide 
schema mappings between datasets to enable linked plotting and fil-
tering. Nebula [11] represents coordination behaviors using structured 
natural language templates. Improvise [42] supports coordination via 
dynamic parameters (live properties) and coordinated queries defined 
over these parameters. Mosaic supports dynamic parameters (Params) 
as well as linked Selections modeled as declarative query predicates. 

Meanwhile, open-source tools inspired by Wilkinson’s Grammar 
of Graphics [45]—including ggplot2 [43], Vega [36], Vega-Lite [35], 
and Observable Plot [4]—support an expressive range of visualizations, 
often with a concise, combinatorial syntax. Vega and Vega-Lite further 
support declarative specification of interaction methods. Vega-Lite’s 
selection abstraction combines input events and scale inversions to 
form query predicates over selected intervals or point values. These 
selections are realized as non-standardized internal Vega constructs, 
complicating interoperation with non-Vega tools. 

Moreover, these languages were not designed to handle millions 
of data points. For greater scale, VegaFusion [22] and VegaPlus [49] 
analyze Vega dataflows and push transformations to a database. Still, 
many Vega transformations are not well supported. As these systems 
modify Vega internally, limitations around extensibility and interoper-
ability (Section 1) also remain. Mosaic clients instead publish queries 
directly, sidestepping the complexities of translating Vega dataflows to 
other computation models. Our benchmark results (Section 8) find that 
Mosaic provides greater scalability across a larger set of visualizations. 

Mosaic is an open, middle-tier architecture that higher-level lan-
guages such as ggplot2, Vega-Lite, or Observable Plot could target. 
Using a shared architecture, a visualization grammar could readily 
interoperate with other libraries, including input components and other 
visualization tools. We demonstrate this through the design of both in-
put widgets and vgplot, a Mosaic-based grammar of interactive graphics 
that combines concepts from existing visualization tools. 

Mosaic offers scalability by proxying queries to a backing database, 
and supports interaction by standardizing and generalizing Vega-Lite-
style selections. Compared to Vega-Lite, Mosaic selections are decou-
pled from input event handling and support more complex resolution 
strategies. A single Mosaic selection may combine predicates provided 
by a variety of diverse views and input techniques. Mosaic selections 
can also synthesize different predicates for different views (clients), 
enabling complex coordination behaviors such as cross-filtering. 

3 THE MOSAIC ARCHITECTURE 

A Mosaic application consists of data-consuming Clients registered 
with a central Coordinator. Clients publish their data needs as declara-
tive queries. A Coordinator manages these queries, performs potential 
optimizations, submits queries to a backing Data Source, and returns 



Fig. 2: Mosaic architecture overview. A Coordinator proxies queries to a 
backing Data Source for one or more data-consuming Clients. Params 
and Selections broadcast reactive updates for scalar values or query 
predicates, respectively. Interactions that update Params and Selections 
may be handled directly by a client, or via Interactor components. 

results or errors back to clients. Interactions among components are 
mediated by Params and Selections, reactive variables for scalar values 
and query predicates, respectively. Figure 2 illustrates this architec-
ture. For clarity the figure depicts a single client; Mosaic applications 
typically include multiple clients with shared Params or Selections. 

Though various query languages might be used, given the ubiquity 
of the relational data model and the availability of scalable databases, 
we focus on SQL (Structured Query Language). Our reference imple-
mentation uses DuckDB [34] as the backing data source. DuckDB is 
a high-performance open-source analytic database that can run both 
server-side and in the browser via WebAssembly (WASM) [21]. 

3.1 Clients 

Mosaic Clients are responsible for publishing their data needs and 
performing data processing tasks—such as rendering a visualization— 
once data is provided by the Coordinator. Clients typically take the 
form of Web (HTML/SVG) elements, but are not required to. 

Figure 3 depicts a Mosaic lifecycle. Upon registration, the Coordina-
tor calls the client fields() method to request an optional list of fields, 
consisting of table and column names as well as statistics such as the 
row count or min/max values. The Coordinator queries the Data Source 
for requested metadata (e.g., column type) and summary statistics as 
needed, and returns them via the client fieldInfo() method. 

Next, the Coordinator calls the client query() method. The return 
value may be a SQL query string or a structured object that produces a 
query upon string coercion. Mosaic includes a query builder API that 
simplifies the construction of complex queries while enabling query 
analysis without need of a parser. The query method takes a single 
argument: an optional filter predicate (akin to a SQL WHERE clause) 
indicating a data subset. The client is responsible for incorporating the 
filter criteria into the returned query. Before the Coordinator submits 
a query for execution, it calls queryPending() to inform the client. 
Once query execution completes, the Coordinator returns data via the 
client queryResult() method or reports an error via queryError(). 

Clients can also request queries in response to internal events. The 
client requestQuery(query) method passes a specific query to the 
Coordinator with a guarantee that it will be evaluated. The client 
requestUpdate() method instead makes throttled requests for a stan-
dard query(); multiple calls to requestUpdate() may result in only 
one query (the most recent) being serviced. Finally, clients may expose 
a filterBy Selection property. The predicates provided by filterBy 
are passed as an argument to the client query() method. 

3.2 Coordinator 

The Coordinator is responsible for managing client data needs. Clients 
are registered via the Coordinator connect(client) method, and 
similarly removed using disconnect(). Upon registration, the event 
lifecycle begins. In addition to the fields and query calls described 
above, the Coordinator checks if a client exposes a filterBy property, 
and if so, adds the client to a filter group: a set of clients that share the 
same filterBy Selection. Upon changes to this selection (e.g., due 

Fig. 3: Example Mosaic event timeline (not to scale). A client can provide 
a list of fields for which the Coordinator returns metadata. Next, the 
Coordinator requests a query from the Client, submits it to a Data Source 
for execution (dotted lines), and returns the result, providing the data 
the client needs to render. Interactions such as interval selections or 
pan/zoom update the state of linked Params or Selections, triggering 
additional rounds of query and update. While a query is being executed, 
corresponding selection updates are throttled (dashed lines): intermedi-
ate updates are dropped and only the most recent update is serviced. 

to interactions such as brushing or zooming), the Coordinator collects 
updated queries for all corresponding clients, queries the Data Source, 
and updates clients in turn. This process is depicted in Figure 3. 

As input events (and thus Selection updates) may arrive at a faster 
rate than the system can service queries, the Coordinator also throttles 
updates for a filter group. If new updates arrive while a prior update is 
being serviced, intermediate updates are dropped in favor of the most 
recent update. The Coordinator additionally performs optimizations 
including caching and data cube indexing, detailed later in Section 6. 

3.3 Data Source 

The Coordinator submits queries to a Data Source for evaluation, us-
ing an extensible set of database connectors. By default Mosaic uses 
DuckDB as its backing database and provides connectors for commu-
nicating with a DuckDB server via Web Sockets or HTTP calls, with 
DuckDB-WASM in the browser, or through Jupyter widgets to DuckDB 
in Python. For data transfer, we default to the binary Apache Arrow 
format [1], which enables efficient serialization of query results with no 
subsequent parsing overhead. While the socket and HTTP connectors 
also support JSON, this is more costly to serialize, results in larger 
payloads, and must be parsed on the client side. 

3.4 Params and Selections 

Params and Selections support cross-component coordination. Akin 
to Vega’s signals [36] and Improvise’s live properties [42], Params 
are reactive variables that hold scalar values (accessible via the value 
property) and broadcast updates upon changes. Params can parameter-
ize Mosaic clients and may be updated by input widgets. The Mosaic 
architecture is agnostic as to where Param and Selection updates come 
from. As we will illustrate later, updates may be initiated by clients 
themselves or by dedicated interactor components. 

A Selection is a specialized Param that manages one or more pred-
icates (Boolean-valued query expressions), generalizing Vega-Lite’s 
selection abstraction [35]. Interaction components update selections 
by providing a clause, an object consisting of the source component 
providing the clause, a set of clients associated with the clause, a query 
predicate (e.g, the range predicate column BETWEEN 0 AND 1), a cor-
responding value (e.g., the range array [0,1]), and an optional schema 
providing clause metadata (used for optimization, see Section 6). Upon 
update, any prior clause with the same source is removed and the new, 
most recent clause (called the active clause) is added. Selections over-
ride the Param value property to return the active clause value, making 
Selections compatible where standard Params are expected. 

Selections expose a predicate(client) function that takes a 
client as input and returns a correponding predicate for filtering the 
client’s data. Selections apply a resolution strategy to merge clauses 
into client-specific predicates. The single strategy simply includes only 
the most recent clause. The union strategy creates a disjunctive pred-
icate, combining all clause predicates via Boolean OR. Similarly, the 
intersect strategy performs conjunction via Boolean AND. Any of these 



Fig. 4: Interactive dashboard of Olympic athletes. Left: Input widgets with 
data-driven content drive filtering by sport, sex, and name. A scatter plot 
with regression lines conveys the relationship between weight and height. 
A sortable table component shows record-level details. Right: A faceted 
plot shows weight distributions by sport and sex. Interquartile ranges 
overlay the raw values. Mosaic manages all data access, interactive 
filtering, regression, and IQR calculations. 

const sel = Selection.intersect() 
hconcat( 
menu({label: 'Sport', from: 'athletes', column: 'sport', as: sel}), 
menu({label: 'Sex', from: 'athletes', column: 'sex', as: sel}), 
search({label: 'Name', from: 'athletes', column: 'name', as: sel}) 
) 
Fig. 5: JavaScript specification of the inputs along the top of Figure 4. 

strategies may also crossfilter by omitting clauses where the clients 
set includes the input argument to the predicate() function. This 
strategy enables filtering interactions that affect views other than the 
one currently being interacted with. 

Both Params and Selections support value event listeners, corre-
sponding to value changes. Selections additionally support activate 
events, which provide a clause indicative of likely future updates. For 
example, a brush interactor may trigger an activation event when the 
mouse cursor enters a brushable region, providing an example clause 
prior to any actual updates. As discussed in Section 6, activation events 
can be used to implement optimizations such as prefetching indexes. 

3.5 Extensibility and Interoperability 

As a middle-tier architecture, Mosaic is designed to be extensible for 
both practical purposes and research experimentation. The Client API 
was carefully designed to offload all query management responsibility 
to the Coordinator. As a result, Coordinator-specific optimizations 
(Section 6) and even the entire Coordinator implementation itself can 
be replaced without affecting client implementations. 

While our implementation primarily targets SQL, DuckDB, and 
Apache Arrow, any of these pieces might be replaced. We strive to use 
standard SQL constructs, enabling other relational databases. Clients 
can use alternative query languages if an augmented Coordinator and 
Data Source support them. Similarly, other data transfer formats could 
be used, so long as the result either conforms to standard JavaScript 
iterables or the clients involved can handle the specialized format. 

Mosaic is intended to support integration across a variety of diverse 
clients. In the next sections, we demonstrate how both standard input 
widgets and a full grammar of interactive graphics can be implemented 
and flexibly interoperate using the Mosaic API. In the future these 
could be further augmented with clients for custom visualization tasks 
(e.g., graph drawing) and rendering methods (e.g., 3D WebGL views). 

4 MOSAIC INPUT COMPONENTS 

Inspired by Observable’s inputs package [3], we developed a set of com-
mon input widgets and a table viewer. Each is implemented as a Mosaic 
client and use Params and Selections for linked interactions. Figure 4 
shows a dashboard that incorporates menu, search, and table com-
ponents, while Figure 8 incorporates a slider component. 

Fig. 6: A subset of mark types supported by vgplot : bar, line, text, 
tick, area; regression, hexbin, contour, raster, and denseLine. 

The slider, menu, and search inputs support dual modes of op-
eration: they can be manually configured or they can be backed by 
a database table. If a backing table and column are specified, the 
slider’s query() method gets the minimum and maximum column 
values to parameterize the slider. The menu and search components 
instead query for distinct column values, and use those to populate the 
menu or autocomplete options (Figure 4), respectively. 

All input widgets can write updates to a provided Param or Selection. 
Param values are updated to match the input value. Selections are pro-
vided a predicate clause (Section 3.4). This linking can be bidirectional: 
an input component will also subscribe to a Param and track its value 
updates. Two-way linking is also supported for Selections using single 
resolution, where there is no ambiguity regarding the value. 

The table component provides a sortable, scrollable table grid view. 
If a set of backing columns is provided, the table fields() method 
requests metadata for those columns. If a backing table is provided 
without explicit columns, fields() instead requests all table columns. 
The returned metadata is used to populate the table header and guide 
formatting and alignment by column type. 

To limit data transfer, the table query() method requests rows in 
batches using SQL LIMIT and OFFSET clauses. As a user scrolls the 
table, the requestQuery() method is used to request a new batch with 
the proper offset. To reduce latency, the component further requests 
that the Coordinator prefetch the subsequent data batch. 

Table components are sortable (Figure 4): clicking a column header 
toggles ascending and descending order. When sort criteria change, the 
current data is dropped and requestQuery() is called to fetch a sorted 
data batch. As a user scrolls, these sort criteria persist. If provided, the 
filterBy Selection is used to filter table content. 

5 VGPLOT: AN INTERACTIVE VISUALIZATION GRAMMAR 

To demonstrate extensibility and interoperability in Mosaic, we devel-
oped vgplot, a grammar of graphics [45] in which graphical marks are 
Mosaic clients. As its name suggests, vgplot combines concepts from 
multiple grammars. vgplot adopts Observable Plot’s chart semantics [4], 
which incorporate ideas from both ggplot2 [43] and Vega-Lite [35]. 
Like Vega-Lite, vgplot supports interaction and declarative specifica-
tion either using an API or standalone JSON/YAML specs. However, 
as vgplot is based on Mosaic, it can readily interoperate with any other 
Mosaic clients, such as the input components of Section 4. 

5.1 Plot Elements 

A plot is a visualization in the form of a Web element. As in other 
grammars, a plot consists of marks—graphical primitives such as bars, 
areas, and lines—that serve as chart layers. Each plot includes a set of 
named scale mappings such as x, y, color, opacity, etc. Plots can 
facet the x and y dimensions, producing associated fx and fy scales. 
Plots are rendered to SVG output by marshalling a specification and 
passing it to Observable Plot. A plot is defined as a list of directives 
defining plot attributes, marks, interactors, or legends. 

Attributes configure a plot (width, height) and its scales (e.g., 
xDomain, colorRange, yTickFormat). Attributes may be Param-
valued, in which case a plot updates upon Param changes. vgplot 
also introduces a Fixed scale domain setting (e.g., xDomain(Fixed)), 
which instructs a plot to first calculate a scale domain in a data-driven 
manner, but keep that domain fixed across subsequent updates. Fixed 
domains prevent disorienting scale domain “jumps” that hamper com-
parison across filter interactions (a limitation of Vega-Lite). 

Marks are graphical primitives, often with accompanying data trans-
forms, that serve as chart layers. Each vgplot mark is a Mosaic client 



const brush = Selection.intersect() 
const channels = { x: 't', y: 'v', fill: 'steelblue' } 
vconcat( 
plot( 
areaY(from('walk'), channels), 
intervalX({ as: brush }) 
), 
plot( 
areaY(from('walk', { filterBy: brush }), channels), 
yDomain(Fixed) 
) 
) 

Fig. 7: An overview+detail visualization of a 50,000 point time-series and 
JavaScript API specification. The areaY mark uses M4 optimization [19] 
to reduce the number of drawn points by over an order of magnitude. 

const bandwidth = Param.value(10) 
vconcat( 
slider({ as: bandwidth, min: 0.1, max: 100, step: 0.1 }), 
plot( 
densityY(from('flights'), { x: 'distance', bandwidth }), 
yAxis(null) 
) 
) 

Fig. 8: 1D kernel density estimate (KDE) of airline miles flown. Linear 
binning is performed in database, subsequent smoothing is performed in 
browser. Param updates to the kernel bandwidth from the slider are 
calculated immediately, without having to re-query the database. 

that produces queries for needed data. Figure 6 shows some supported 
mark types. Marks accept a data source definition and a set of supported 
options, including encoding channels (such as x, y, fill, and stroke) 
that can encode data fields. A data field may be a column reference 
or query expression, including dynamic Param values. Common ex-
pressions include aggregates (count, sum, avg, median, etc.), window 
functions (e.g., moving averages), date functions, and a bin transform. 
Field expressions are specified using Mosaic’s SQL builder methods. 

Basic marks, such as dot, bar, rect, cell, and text mirror their 
namesakes in Observable Plot [4]. Variants such as barX and rectY 
indicate spatial orientation and data type assumptions. For example, 
barY indicates vertical bars—continuous y over an ordinal x domain— 
whereas rectY indicates a continuous x domain. Basic marks follow 
a straightforward query() construction process: Iterate over all en-
coding channels. If no aggregates are found, SELECT all fields directly. 
If aggregates are present, include non-aggregate fields as GROUP BY 
criteria. If provided, map the filter argument to a WHERE clause. For 
more details on query generation, see Appendix A. 

The area and line marks connect consecutive sample points. Fig-
ure 7 presents an overview+detail area chart. The queries for spatially 
oriented marks (areaY, lineX) apply M4 optimization [19, 20]. The 

Fig. 9: Hexagonal bins of airline delay by scheduled departure time, 
alongside marginal histograms. Hex binning and aggregation are per-
formed in database. Interactive changes to the color scale (e.g., linear, 
log, or square root scale) are processed immediately in browser. 

plot( 
denseLine(from('stocks_after_2006'), { 
x: 'Date', y: 'Close', z: 'Symbol', fill: 'density' 
}), 
colorScheme('pubugn') 
) 

Fig. 10: An arc-length normalized density line chart [28] for 240k monthly 
stock price values. Note high points across the top, the 2008 crash, and 
distinct bands of $25 and $15 stocks. 

query() method determines the pixel resolution along the major axis 
and performs perceptually faithful, pixel-aware binning of the series, 
limiting the number of drawn points. This optimization offers dramatic 
data reductions, potentially spanning multiple orders of magnitude. 

The regression mark (Figure 4) visualizes linear regression fits. 
Statistical calculations are performed in a single aggregate query(). 
The mark then draws regression lines and confidence intervals. 

The densityX/Y marks perform 1D kernel density estimation. Fig-
ure 8 shows a densityY mark, with a slider-bound bandwidth 
Param. The generated query() performs linear binning [18,41], which 
proportionally assigns point weights between adjacent bins to provide 
greater estimation accuracy [17]. Subqueries for “left” and “right” 
bins are aggregated into a 1D grid, then smoothed in-browser using 
Deriche’s accurate linear-time approximation [14, 17]. 

The density2D, contour, and raster marks compute densities 
over a 2D domain. Binning and aggregation is performed in database, 
while dynamic changes of bandwidth, contour thresholds, and color 
scales are handled immediately in the browser. The hexbin mark 
pushes hexagonal binning and aggregation to the database (Figure 9); 
color and size channels may map to count or other aggregate functions. 

Rather than point densities, the denseLine mark (Figure 10) plots 
densities of line segments [28]. The query() method pushes line 
rasterization and aggregation to the database with a multi-part process 
described in Appendix A.5. We added the denseLine mark late in our 
development process to test extensibility, overriding the raster mark 
with a new query() method. As a result, the denseLine mark inherits 
raster’s smoothing capability to create curve density estimates [23]. 

Interactors imbue plots with interactive behavior. Most interactors 
listen to input events to update bound Selections. The toggle interac-



tor selects individual points (e.g., by click or shift-click) and generates 
a selection clause over specified fields of those points. Other interactors 
include: nearestX/Y to select the nearest value along the x and/or 
y channel, intervalX/Y to create 1D or 2D interval brushes (Fig-
ure 7), and panZoom interactors that produce interval selections over 
corresponding x or y scale domains (c.f., Vega-Lite [35]). interval 
interactors accept a pixelSize parameter that sets the brush resolu-
tion: values may snap to a grid whose bins are larger than screen pixels, 
which can be leveraged to optimize query latency (Section 6). The 
highlight interactor updates the rendered state of a visualization in 
response to a Selection, querying for a selection bit vector and then 
modifying unselected items to a translucent, neutral gray color. 

Legends can be added to a plot or as a standalone element. The 
name directive gives a plot a unique name, which a standalone legend 
can reference (legendColor({for:'name'})) to avoid respecifying 
scale domains and ranges. Legends also act as interactors, taking a 
bound Selection as a parameter. For example, discrete legends use the 
logic of the toggle interactor to enable point selections. Two-way 
binding is supported for Selections using single resolution, enabling 
legends and other interactors to share state, as in Figure 11. 

Finally, the layout functions vconcat (vertical concatenation) and 
hconcat (horizontal concatenation) enable multi-view layout. Layout 
helpers can be used with plots, inputs, and arbitrary Web content such 
as images and videos. To ensure spacing, the vspace and hspace 
helpers add padding between elements in a layout. 

5.2 Declarative Specification 

In addition to a JavaScript API, all vgplot constructs, Mosaic inputs, 
and layout helpers can be authored using a JSON specification format. 
YAML, a more human-readable format that maps to JSON, can also be 
used. As a result, Mosaic applications can be conveniently generated 
from other programming languages. Figure 11 shows integration of Mo-
saic with Jupyter notebooks. The Mosaic release includes a notebook 
widget which, given a YAML or JSON spec, creates a DuckDB connec-
tion in the Jupyter Kernel that communicates via Jupyter Comms with 
a notebook output cell running Mosaic JavaScript code. The Python 
DuckDB API can directly access Pandas data frames, supporting easy 
and efficient integration into Jupyter workflows. In addition, Param 
and Selection values are shared with the kernel, accessible as Python 
variables. We implemented the Jupyter connector in about a hundred 
Mosaic-specific lines of code, showing the ease of adapting Mosaic to 
new environments. In the future, a Python API akin to Altair [40] could 
programmatically generate Mosaic/vgplot JSON specifications. 

6 COORDINATOR OPTIMIZATIONS 

Mosaic supports query optimization at multiple levels. For optimiza-
tions that are specific to a given visualization type (such as M4 for 
line and area marks), clients can perform local optimizations as part 
of query generation. The Coordinator, in turn, provides support for 
optimizations that extend over multiple views and interaction cycles. 

6.1 Query Caching, Consolidation, and Prefetching 

Query caching optimizes for repeated queries. The Coordinator uses 
a standard LRU cache, storing query results keyed by SQL query 
text. Future research could explore alternative cache eviction policies 
that account for latency, dataset size, or other factors. Already, we 
notice greater benefits for caching than first anticipated: we observe 
that interactive states are often revisited (even during brushing), and 
highlight bit vector queries are often shared across plots. 

The Coordinator also applies query consolidation, merging overlap-
ping queries into a single query to reduce processing and network time. 
As multiple queries tend to be issued in tandem (for example upon 
initialization), the Coordinator waits one animation frame, collects 
incoming queries, and merges those that query the same backing table 
and GROUP BY dimensions. Upon query completion, the Coordinator 
parcels out appropriate projections to clients. Query consolidation is 
valuable for optimizing multiple views that show data at the same level 
of aggregation. For example, data for a 4x4 scatter plot matrix requires 
only 1 consolidated query rather than 16 separate queries. 

params: 
click: { select: single } 
domain: [sun, fog, drizzle, rain, snow] 
colors: ['#e7ba52', '#a7a7a7', '#aec7e8', '#1f77b4', '#9467bd'] 

vconcat: 
- plot: 
- mark: dot 
data: { from: weather, filterBy: $click } 
x: { dateMonthDay: date } 
y: temp_max 
fill: weather 
r: precipitation 

- { select: intervalX, as: $range } 
- { select: highlight, by: $range, fill: '#eee' } 
- { legend: color, as: $click, columns: 1 } 
xyDomain: Fixed 
colorDomain: $domain 
colorRange: $colors 

- plot: 
- mark: barX 
data: { from: weather, filterBy: $range } 
x: { count: } 
y: weather 
fill: weather 

- { select: toggleY, as: $click } 
- { select: highlight, by: $click } 
xDomain: Fixed 
colorDomain: $domain 
colorRange: $colors 

Fig. 11: Interactive exploration of Seattle weather with YAML specification 
making use of data transforms, filtering, highlighting, and linked legends. 
Param and Selection references use a $ prefix. If a Selection is not 
explicitly defined, one with the intersect resolution strategy is created. 

Prefetching reduces latency by querying data before it is needed. 
Clients can issue queries using the Coordinator’s prefetch method. 
These requests are enqueued with a lower priority than standard queries. 
Prefetched results are then stored in the Coordinator’s cache, available 
for subsequent requests. Clients may cancel prefetch requests in 
response to interactive updates. As described next, the Coordinator also 
performs automatic prefetching when building data cube indexes. 

6.2 Data Cube Indexes 

To optimize filtering of aggregated data, the Coordinator automatically 
builds indexes in the form of small data cubes [16] that can rapidly 
service interactive queries. Upon updates to a filter group Selection, the 
Coordinator analyzes the active selection clause and client query() 
output. If generated queries involve group-by aggregation using sup-
ported aggregate functions (currently count, sum, avg, min, and max), 
the Coordinator will rewrite queries to create data cube index tables. 



Akin to Falcon [31], Mosaic builds indexes that pre-aggregate data 
between an active view and another filtered view. However, Mosaic 
extends Falcon in multiple ways. Rather than assume a prespecified 
set of visualizations, Mosaic automatically applies data cube indexing 
based on observed queries and selections. Next, index tables are built 
and stored in the database, rather than shipped to the browser. Queries to 
an index thus use the more scalable database for processing and indexed 
tables are cached in-database for reuse. In contrast to Falcon, we do not 
create summed area tables [13], which use a dense representation that 
can overwhelm available memory (Section 8.2). Foregoing summed 
area tables also permits indexing of aggregate functions other than 
count and sum, including avg, min, and max, in a straightforward way. 

For example, given an interval selection over the column $u, the 
Coordinator uses the number of $pixels and the minimum and max-
imum possible brush values in the data domain [$bmin, $bmax] to 
produce pixel-level bins for all possible brush positions. The following 
query creates an index table for brush interactions between a linear, 
one-dimensional selection clause and a single histogram over column 
$v (with initial value $v0 and bin size $step): 

CREATE TEMP TABLE IF NOT EXISTS cube_index_a097caa4 AS 
SELECT 
$v0 + $step * FLOOR(($v - $v0) / $step) AS x1, 
$v0 + $step * (FLOOR(($v - $v0) / $step) + 1) AS x2, 
COUNT(*) AS y, 
FLOOR($pixels * ($u - $bmin) / ($bmax - $bmin)) AS activeX 

FROM $table 
GROUP BY x1, x2, activeX 

The table name includes a hash of the SELECT statement that creates the 
table, enabling easy reuse. If the table already exists it is not re-created. 
Upon selection updates, the Coordinator issues queries to the index 
table. For data-space brush endpoints $b0 and $b1, the index query is: 

SELECT x1, x2, SUM(y) FROM cube_index_a097caa4 
WHERE activeX BETWEEN 
FLOOR($pixels * ($b0 - $bmin) / ($bmax - $bmin)) AND 
FLOOR($pixels * ($b1 - $bmin) / ($bmax - $bmin)) 
GROUP BY x1, x2 

The size of the index table is bound by the number of bins (binned $v 
steps and $pixels), not the size of the input data. Two-dimensional 
brushes are handled similarly, resulting in both activeX and activeY 
index table columns. To index client queries with subqueries or com-
mon table expressions, the indexer performs subquery pushdown of 
interactive dimensions (e.g., brush pixel bins) so that these values pass 
from subqueries to the top-level aggregation (see Appendix A.4). 

Index tables include bins for each interactive dimension of an active 
selection clause. To determine these dimensions, the indexer uses 
metadata provided by a Selection clause’s schema property. The schema 
indicates the abstract predicate type: one of interval or point. The 
schema for interval types also includes spatial x/y scale definitions and 
the interactive pixel size. Larger interactive pixels lower the interactive 
resolution, requiring fewer index bins [31]. The indexer determines 
interactive extents from the scale ranges and interactive pixel size, and 
bins non-linear scales such as log, sqrt, and symlog based on the scale 
type. In sum, Selection clauses provide not only query predicates, but 
also the encoding information necessary for automatic optimization. 

Data cube indexes can dramatically reduce interactive latency [25, 
31]. While common cases include cross-filtered histograms (Figure 13), 
automatic application also optimizes cases we did not initially expect, 
including hexbin and denseLine filtering over fixed domains (e.g., 
brushing histograms in Figure 9) and the weather example in Figure 11 
(index-optimized filtering of the lower plot). 

Index construction can sometimes be costly (Section 8.2). To 
prefetch indexes, each filter group monitors Selection activate 
events, which interactors trigger when a pointer enters a view. Upon 
activation, the Coordinator submits queries to build index tables before 
an interval or point selection is initiated. For longer construction times, 
the Coordinator and Mosaic DuckDB server can record interactions to 
precompute bundles of queries and index tables for future use. 

Fig. 12: Linked weather plots. A Vega-Lite plot (left) populates a Mosaic 
selection to drive an average line (red) and filter a vgplot chart (right). 

const brush = Selection.crossfilter() 
vconcat(['delay', 'time', 'distance'].map(column => 
plot( 
rectY(from('flights', { filterBy: brush }), { 
x: bin(column), y: count(), fill: 'steelblue', inset: 0.5 
}), 
intervalX({ as: brush }), xDomain(Fixed) 
) 
)) 

Fig. 13: Histograms showing arrival delay, departure time, and distance 
flown for 10M flight records. An interval selection reveals that flights 
departing later in the day are more likely to be delayed. 

7 EXAMPLES 

We demonstrate Mosaic’s expressivity and concision through examples. 
Earlier instances include scalable area charts (Figure 7) and density 
plots (Figures 8–10). Here we provide more complex examples. For 
additional examples, see Appendix B in the supplemental material. 

Seattle Weather. Figure 11 shows interactive exploration of Seattle 
weather, adapted from a Vega-Lite example. The top plot uses a dot 
mark and intervalX and highlight interactors. The x channel field 
uses a dateMonthDay transform to map multi-year data to a single 
year. The bottom plot uses a barX mark to count days per weather 
type, with a filterBy selection driven by a selected interval. Both the 
bars and legend serve as toggle interactors that drive a highlight 
for the bars and a filterBy selection for the dot above. The legend 
and barX marks share a selection and update in tandem. 

Vega-Lite Integration. Figure 12 demonstrates tool interoperability: 
a Vega-Lite plot of precipitation filters a vgplot scatter plot of tempera-
ture and wind. Given the Vega-Lite specification, this example extracts 
transforms to generate Mosaic clients, and maps internal Vega-Lite 
selections to Mosaic selections. As a result, Mosaic mediates both data 
access and linked interactions for the Vega-Lite plot. 



const point = Param.value(new Date('2015-04-20')) 
plot( 
ruleX({ x: point }), 
textX({ x: point, text: point, frameAnchor: 'top', ... }), 
lineY(from('stocks'), { x: 'Date', stroke: 'Symbol', 
y: sqlClose / (SELECT Close FROM stocks 

WHERE Symbol = source.Symbol AND Date = ${point}) }), 
nearestX({ as: point }), 
yScale('log'), yGrid(true), yTickFormat('%') 
) 

Fig. 14: Stock returns normalized to a hypothetical purchase date. On 
mouse move the prices are renormalized for the nearest date by a 
parameterized expression created with Mosaic’s sql template literal. 

Fig. 15: Electrical recordings from a mouse brain. Prefetching enables 
smooth panning of a raster over 10.7M time samples (4.1B rows). 

Olympic Athlete Dashboard. Figure 4 shows an interactive dash-
board of Olympic athlete data, showing interoperation of input widgets, 
tables, regression models, and a multi-layer faceted plot. All compo-
nents share a single intersect selection for filtering across views. 

Flight Data. Figure 13 shows linked histograms for 10M flights [9]. 
Each consists of a rectY mark with a bin transform, count aggregate, 
and a shared filterBy crossfilter selection driven by intervalX 
brush interactors. Interactive updates are served by data cube indexes. 

Normalized Stock Prices. Figure 14 shows stock prices on a log 
scale. A nearestX interactor selects the nearest market day; this value 
parameterizes a field expression that normalizes prices to show returns 
if one had invested on that day. Normalization is performed in database 
by a one-line expression with a scalar subquery. A similar Vega-Lite 
example requires an extra transform pipeline with a lookup join and 
derived calculation; the Mosaic version is simpler and more efficient. 

Neuron Spike Data. Figure 15 shows a raster of electrical activity 
measured by our neuroscience collaborators using a probe in a mouse 
brain. Measurements of 384 sensor channels across 10.7M time points 
(4.1B rows) are drawn from an 18GB Parquet file. To smoothly pan the 
display, a tiled variant of the raster mark queries adjacent batches of 
data using the Coordinator prefetch method. 

Gaia Star Catalog. The Gaia star catalog is a sky survey of over 
1.8B stars [15], from which we extracted selected columns into a 
34GB Parquet file. Figure 1 visualizes all records with a raster 
sky map, rectY histograms of magnitude and parallax, and a raster 
Hertzsprung-Russell diagram of stellar color vs. magnitude. The map 
uses the equal-area Hammer projection, performed in the database. 
The views are linked by a crossfilter selection driven by interval 
interactors, automatically optimized by data cube indexes. 

8 PERFORMANCE BENCHMARKS 

To further assess Mosaic, we conducted performance benchmarks ex-
amining both initial rendering and interactive update times. Unless 
otherwise noted, we ran all benchmarks on a single MacBook Pro lap-
top (16-inch, 2021) with an Apple M1 Pro processor and 16GB RAM, 
running MacOS 12.6 and Google Chrome 109.0.5414.119. Server-side 
DuckDB (v0.6.1) instances used a standard configuration of all proces-
sor cores and a maximum of 80% RAM, with network communication 
over a socket connection and Apache Arrow data transport. 

8.1 Initial Chart Rendering 

We first compare initial rendering times for Mosaic using either WASM 
or a local server against Vega [35,36], VegaFusion [22], and Observable 
Plot [4]. All tests use a synthetic dataset with four columns: an index 
counter (i), a categorical variable of cardinality 20 (w), a uniform 
random variable (u), and a random walk value (v). We vary the dataset 
size from 10 thousand to 10 million rows. 

We measure render times for six visualizations: bars of average v 
grouped by w, a linear regression plot of v on i, a 2D histogram binned 
on u and v, an area chart of v over i, and finally density contours and 
hexbins over the domain of u and v. We chose these conditions to cover 
both common visualization needs and a range of scalable visualization 
types. Plots in the Vega condition are created using Vega-Lite [35], 
except for density contours. Vega-Lite does not support contour plots so 
we use Vega directly. As neither Vega nor Vega-Lite support hexagonal 
binning, the Vega conditions omit the hexbins visualization. 

Benchmark results are plotted in Figure 16. Vega and Observable 
Plot scale similarly, but with a slight advantage for Plot. Plot renders 
to SVG directly and does not have Vega’s overhead of constructing 
a reactive dataflow graph and intermediate scenegraph. VegaFusion 
performs server-side optimization for bars and 2D histograms only, 
otherwise providing results identical to Vega. 

Meanwhile, Mosaic roundly outperforms these tools, often by one 
or more orders of magnitude. Mosaic WASM fares well at lower 
data volumes, but at larger sizes is limited by WebAssembly’s lack 
of parallel processing. DuckDB aggregate query performance drives 
Mosaic’s improvements for the bars, regression, 2D histogram, and 
density contours charts. The hexbins example benefits from the hexbin 
mark expressing hexagonal binning calculations within a SQL query. 

All non-Mosaic tools fail to render area charts of larger datasets, as 
Chrome will not draw an SVG path with a million or more points. Here 
the Mosaic area mark client’s use of M4 enables greater scale, as the 
number of drawn points is a function of available screen pixels. 

8.2 Interactive Updates 

Next we assess interactive performance. We drop the Vega and Observ-
able Plot conditions, as Vega can not handle the dataset sizes tested and 
Plot does not support interaction. We compare Mosaic using WASM, a 
local server, and a remote server with 2 12-core 2.6 GHz Intel Xeon 

Fig. 16: Initial rendering performance. Median times are shown, in-
terquartile ranges are smaller than the plotted dots. Mosaic provides 
order-of-magnitude performance improvements over Vega or Observable 
Plot for a range of visualizations. VegaFusion only optimizes the average 
bars and 2D histogram conditions. Mosaic WASM does not scale as well 
as a local server, in part due to the lack of parallel processing. 



Fig. 17: Index construction (top) and interactive update performance (bot-
tom). Median times and interquartile ranges are shown. Mosaic server 
configurations maintain interactive update rates at high data volumes, 
though start to degrade as indexes for raster data become denser. 

processors and 512GB RAM running Rocky Linux 9.1, accessed from 
2 miles away over a WiFi router and fiber optic Internet connection. 

We measure both data cube index creation and subsequent interactive 
update times across three real-world applications: the flights dataset 
(Figure 13), the Gaia star catalog (Figure 1), and a simplified Gaia 
example (gaia-bins) that replaces high-resolution rasters with simpler 
2D histograms (as in Falcon’s evaluation [31]). We vary dataset sizes 
from millions to billions of rows. As our flights dataset has 10M rows, 
we duplicate data to construct larger 100M and 1B row tables. For Gaia, 
we use 0.1%, 1%, 10%, and 100% samples of the 1.8B row dataset. 

Figure 17 plots the results. Server-based Mosaic instances provide 
performant index construction (< 5 seconds for up to 200M records) 
and interactive updates (100ms or faster). Network latency causes the 
remote server to underperform until larger (100M+) dataset sizes, at 
which point the additional memory and parallelism provide benefits. 
Mosaic WASM runs out of memory for 1B flights and for Gaia samples 
of 10% and up. We tested VegaFusion on the flights data only (VegaFu-
sion does not optimize density rasters). VegaFusion does not perform 
indexing, leading to over 1 second latency at 100M. We attempted to 
test 1B points, but canceled after 10 minutes passed with no updates. 

Across Mosaic conditions, index creation time increases with dataset 
size. These indexes optimize subsequent updates. In the Gaia raster 
condition, update times begin to slow as the indexes for cross-filtering 
between raster displays become large. Here the maximum possible data 
cube size is 3.6B rows (300x200 interactive pixels times 300x200 raster 
cells to render). In practice many fewer rows are needed due to sparsity; 
nevertheless, index sparsity decreases as the dataset size increases. 
Techniques that materialize a dense index, including imMens [25] and 
Falcon [31], will run out of memory and fail at this scale. Mosaic 
remains capable of providing an interactive experience. 

9 DISCUSSION 

Mosaic is a middle-tier architecture that coordinates interactive data-
driven components and scalable data stores. Mosaic Clients publish 
data needs as declarative queries while interactions are coordinated via 
dynamic Params and predicate-based Selections. The Mosaic Coordi-
nator mediates between client implementations and data management, 
while performing automatic query optimization. We demonstrate inter-
active exploration of large-scale data using Mosaic-based input widgets 
and vgplot, a grammar of interactive graphics. A range of examples 
highlight Mosaic’s extensibility and interoperability, while performance 
benchmarks show significant scalability and interactive performance 
improvements over existing web-based visualization tools. 

Whereas prior work on scalable visualization has largely contributed 
individual techniques, Mosaic provides a framework that integrates 
databases, query optimization, and an expressive set of visualization 
abstractions within a unified system. The Mosaic Coordinator provides 
automatic optimizations such as caching, query consolidation, and data 
cube indexes, while individual clients can perform local optimizations 

(such as M4 or Coordinator-assisted prefetching) based on known 
visualization or interaction semantics. The vgplot library also illustrates 
how many visualization transforms (including a variety of density 
displays) can be implemented as database queries. 

One limitation is the time required to build indexes for larger (500M+ 
row) datasets. Rather than assume a “cold start”, Mosaic also supports 
index precomputation; at most a few minutes are needed for the full 
Gaia catalog. Slower interactive updates are partially compensated by 
Mosaic’s event throttling: one can interact in real-time (e.g., adjust 
brushes) though the data may update after a short but noticeable delay. 
As noted earlier, Mosaic also supports reducing interactive resolution 
[31] to produce smaller data cubes that are faster to query. 

Moreover, we have found it valuable to adjust the sample level 
during exploration, navigating under low latency with a smaller sample, 
then switching to a large sample to gain resolution and detail. In this 
way, Mosaic leverages both sampling and binned aggregation akin to 
Moritz et al.’s optimistic visualization [29]. Future work might add 
more performant indexing or prefetching schemes (c.f., [27]). 

While Observable Plot has proven a convenient renderer for vgplot, 
it does not yet support incremental rendering, slowing updates involv-
ing many unchanged graphical elements. For fast drawing of 100k+ 
data points, future Mosaic clients could use hardware accelerated ren-
dering. In addition, operations such as graph layout and cartographic 
transformations can be difficult or inefficient to implement in terms 
of database queries. While they can instead be performed in-browser, 
ultimately we would like to provide scalable support. As DuckDB is an 
extensible, open source engine, future extensions might better support 
GIS or specialized visualization workloads. Future Mosaic Coordinator 
implementations could also federate query processing across standard 
SQL databases and alternative engines. 

A fundamental question here concerns how data transformation 
and visual encoding are best partitioned among a database and clients 
[30, 47]. In vgplot, most preparatory transformations are pushed to 
the database while visual encoding is performed in-browser. This ap-
proach supports immediate changes of color encodings and even kernel 
smoothing without querying the database. However, the distinction 
between transformation and encoding is not always clear cut. To per-
form hexagonal binning, the hexbin mark query performs a screen 
space mapping and then maps back to data space for consistency and 
integration with Observable Plot. Cartographic projection is particu-
larly challenging, as not all projections are invertible, preventing scale 
inversion from screen space to data space. For projected maps, linked 
selection queries are better supported using post-projection coordinates, 
as in the Gaia example of Figure 1. Future efforts might more flexibly 
partition “encoding” transforms between the database and browser. 

Going forward, we hope that Mosaic can serve as an open platform 
to develop and deploy scalable, interactive data exploration methods. 
We carefully designed the Mosaic Coordinator to decouple component 
implementations from data management, with the goal of making it 
easier for database specialists and visualization/UI specialists to con-
tribute to separate parts of the system. Mosaic can be extended with 
new client components (or entire component libraries), while vgplot 
can be extended with new marks or interactors, as is appropriate. 

One area of future work is to further integrate Mosaic with other 
systems. Figure 12 shows a proof-of-concept integration with Vega-
Lite; more effort is needed to develop an alternative Vega-Lite parser 
that provides automatic Mosaic integration. Meanwhile, visualization 
generation systems such as PI2 [12] or coordination specifications such 
as Nebula [11] might be adapted to leverage Mosaic. 

As previously noted, Mosaic can serve as a testbed for improved 
query caching, indexing, and other optimization methods. By logging 
queries and selections, Mosaic can also assist empirical research into 
data exploration workloads and user modeling [5, 6]. Given its use 
of declarative specification, Mosaic could serve as a target for future 
visualization reasoning and recommender systems (such as Draco [32] 
and Voyager [46]), including new automated reasoning rules for high-
volume data. Mosaic, vgplot, and all corresponding components are 
available as open source software at uwdata.github.io/mosaic. 

https://uwdata.github.io/mosaic
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A QUERY GENERATION & DATE CUBE INDEXES

Here we further detail how vgplot mark clients generate queries and
how the Coordinator performs data cube indexing.

A.1 Basic Marks
Each vgplot mark is as a Mosaic client that generates queries. The Co-
ordinator invokes the client query()method and manages the returned
query. Basic mark types use a straightforward query generation proce-
dure. For example, consider a standard scatter plot (dot mark) with
x, y, and r (radius size) encodings. For a backing data table $table
and corresponding table columns denoted as $u, $v, and $w, the mark
query() method returns a query that selects the data directly:

SELECT $u AS x, $v AS y, $w AS r
FROM $table

Subsequent visual encoding—such as mapping the data through scale
transforms—is performed in the browser. Mark clients may also have
a filterBy Selection property, which if set, is used to generate a
predicate that is passed as the filter argument to the mark query()
method. For basic marks, the filter predicate is appended as a SQL
WHERE clause. Given an interval selection for column $b over the
domain [$b0, $b1], the following query is produced:

SELECT $u AS x, $v AS y, $w AS r
FROM $table
WHERE $b BETWEEN $b0 AND $b1

If a mark encoding involves an aggregate operation, the non-aggregated
fields are included as SQL GROUP BY criteria. Consider a bar chart
(barY mark) that, for an ordinal column $a on the x-axis, shows the
average values of columnn $b on the y-axis:

SELECT $a AS x, AVG($b) AS y
FROM $table
GROUP BY $a

A.2 Connected Marks and M4 Optimization
Connected marks such as lineX/Y and areaX/Y can be further opti-
mized. Consider the area charts in Figure 7. For a table $table with
column $t visualized along the x-axis and column $v along the y-axis,
the basic query generation method above would select all data points:

SELECT $t AS x, $v AS y
FROM $table
ORDER BY x

We can do better by applying shape-preserving, pixel-aware binning
using the M4 method [19]. For a given chart pixel width $w and
minimum and maximum plotted $t values $t0 and $t1, the optimized
query used by Mosaic takes the form:

SELECT MIN($t) AS x, ARG_MIN($v, $t) AS y
FROM $table
GROUP BY FLOOR($w * (x - $t0) / ($t1 - $0))
UNION
SELECT MAX($t) AS x, ARG_MAX($v, $t) AS y
FROM $table
GROUP BY FLOOR($w * (x - $t0) / ($t1 - $0))
UNION
SELECT ARG_MIN($t, $v) AS x, MIN($v) AS y
FROM $table
GROUP BY FLOOR($w * (x - $t0) / ($t1 - $0))
UNION
SELECT ARG_MAX($t, $v) AS x, MAX($v) AS y
FROM $table
GROUP BY FLOOR($w * (x - $t0) / ($t1 - $0))
ORDER BY x

For each pixel, M4 selects the extremal $t and $v values—two mini-
mums and two maximums, hence “M4”. The resulting output data has
at most four points per pixel. We use the “AM4” variant of M4 [20],
which uses ARG_MIN and ARG_MAX aggregates to select a matching
co-ordinate for each extremum.

A.3 Linear Binning
The densityX and densityYmarks visualize kernel density estimates.
To produce these estimates in a scalable manner, we use an approxi-
mation that first bins the data points into a grid. We perform linear
binning [18, 41] in the database to make the approximation more ac-
curate [17]. Linear binning proportionally distributes the weight of
a point between adjacent bins. If a data point xi lies between bins
with midpoints b0 and b1, linear binning assigns weight proportional to
(b1 � xi)/(b1 �b0) to bin b0 and (xi �b0)/(b1 �b0) to bin b1.

To bin column $v linearly into $n bins over the domain [$v0, $v1],
we use a query with two subqueries—one for the “left” bin and one for
the “right” bin—and aggregate the results of their union:

SELECT index, SUM(weight) AS weight
FROM (
SELECT
($n - 1) * ($v - $v0) / ($v1 - $v0) AS p,
FLOOR(p) AS index,
index + 1 - p AS weight
FROM $table
UNION ALL
SELECT
($n - 1) * ($v - $v0) / ($v1 - $v0) AS p,
FLOOR(p) + 1 AS index,
p - index - 1 AS weight
FROM $table

)
GROUP BY index
HAVING weight > 0

The return value is a one-dimensional grid of binned values, with an in-
teger index and corresponding weight. To generate two-dimensional
densities, we perform linear binning in 2D using an analogous proce-
dure involving four subqueries. Subsequent smoothing is performed
in the browser using Deriche’s linear time approximation [14, 17],
allowing rapid updates upon change of kernel bandwidth.

A.4 Binned Aggregation and Data Cube Indexes
Figure 13 shows three histograms with cross-filtering interactions. For
each histogram (rectY mark), we use a bin transform on the x en-
coding channel and a count aggregate for the y channel. The bin
transform provides an expression generator function that is called by
the basic mark query generation procedure. The query for a single
histogram of column $v over the domain [$v0, $v1] is:

SELECT
$v0 + $step * FLOOR(($v - $v0) / $step) AS x1,
$v0 + $step * (FLOOR(($v - $v0) / $step) + 1) AS x2,
COUNT(*) AS y

FROM $table
GROUP BY x1, x2

To cross-filter, each mark has a filterBy Selection that produces
predicates driven by selection brushes (intervalX interactors). As
above, the default query generation procedure adds those predicates to
a SQL WHERE clause. For an interval brush selection [$b0, $b1] over
the column $u, the resulting query for a cross-filtered histogram is:

SELECT
$v0 + $step * FLOOR(($v - $v0) / $step) AS x1,
$v0 + $step * (FLOOR(($v - $v0) / $step) + 1) AS x2,
COUNT(*) AS y

FROM $table
WHERE $u BETWEEN $b0 AND $b1
GROUP BY x1, x2

If data cube indexing is enabled, these queries are automatically opti-
mized by the Coordinator, in a fashion completely decoupled from the
mark itself. If generated queries involve group-by aggregation using
supported aggregate functions (currently count, sum, avg, min, and
max), the Coordinator will rewrite the query to create a multivariate
data tile [25]. The result is stored in the database as a new table. The



table name includes a hash of the SQL query string that creates the
table, enabling easy reuse. If the table already exists it is not re-created.

For an interval selection over the column $u, the Coordinator uses
the number of $pixels and the minimum and maximum possible brush
values in the data domain [$bmin, $bmax] to produce pixel-level bins
for all possible brush positions. The following query creates a data
cube for brush interactions between a one-dimensional active selection
clause and a single histogram:

CREATE TEMP TABLE IF NOT EXISTS cube_index_a097caa4 AS
SELECT
$v0 + $step * FLOOR(($v - $v0) / $step) AS x1,
$v0 + $step * (FLOOR(($v - $v0) / $step) + 1) AS x2,
COUNT(*) AS y,
FLOOR($pixels * ($u - $bmin) / ($bmax - $bmin)) AS activeX

FROM $table
GROUP BY x1, x2, activeX

Upon selection updates, the Coordinator issues queries to the data
cube index rather than use the basic filtered query described previously.
Given data-space brush endpoints $b0 and $b1, the index query is:

SELECT x1, x2, SUM(y)
FROM cube_index_a097caa4
WHERE activeX BETWEEN
FLOOR($pixels * ($b0 - $bmin) / ($bmax - $bmin)) AND
FLOOR($pixels * ($b1 - $bmin) / ($bmax - $bmin))
GROUP BY x1, x2

The size of the data cube is bound by the number of bins (binned $v
steps and the number of $pixels), not the size of the input data. As a
result, for large datasets the data cube index queries can be computed
substantially faster [25, 31]. Two-dimensional brushes are handled
similarly, resulting in both activeX and activeY index columns.

Data cube indexes can be created for complex queries involving
subqueries or common table expressions (CTEs). In such cases, the
Coordinator walks the query tree and performs pushdown of active
selection columns. In the densityY query below, the column $u is
pushed down into the subqueries and then pixel-binned by the outer
query. Subsequent index queries thus amortize the cost of both interac-
tive updates and the original, complex aggregation.

CREATE TEMP TABLE IF NOT EXISTS cube_index_b0d4fe30 AS
SELECT
index, SUM(weight) AS weight,
FLOOR($pixels * ($u - $bmin) / ($bmax - $bmin)) AS activeX

FROM (
SELECT
($n - 1) * ($v - $v0) / ($v1 - $v0) AS p,
FLOOR(p) AS index,
index + 1 - p AS weight,
$u
FROM $table
UNION ALL
SELECT
($n - 1) * ($v - $v0) / ($v1 - $v0) AS p,
FLOOR(p) + 1 AS index,
p - index - 1 AS weight,
$u
FROM $table

)
GROUP BY index, activeX
HAVING weight > 0

A.5 Line Density
Density mark calculations can use either the linear binning method
described above or standard binning, in which the “mass” of point is
allocated to a single bin only. However, these methods apply to point
data only. Density line charts [28] and curve density estimates [23]
instead show densities for series, not just individual data points. The
denseLine mark subclasses vgplot’s raster mark, generating an
alternative query that performs line rasterization and normalization in
the database to produce line densities.

As shown below, the generated query is complex and consists of mul-
tiple processing steps specified as common table expressions (CTEs).
The key steps are: (1) bin data points to raster grid coordinates (source
subquery), (2) identify line segments as start points and delta offsets
(pairs subquery), (3) compute integer indices up to the maximum line
segment run or rise (in raster bins, indices subquery), (4) join the line
segments and indices to perform line rasterization (raster subquery),
(5) normalize column weights for each series to approximate arc-length
normalization [28] (points subquery), and (6) aggregate all density
values into an output grid (outer query).

WITH
source AS ( -- 1. source data, bin x and y
SELECT
FLOOR(($x - $x0) * ($nx - 1) / ($x1 - $x0)) AS x
FLOOR(($y - $y0) * ($ny - 1) / ($y1 - $y0)) AS y,
$z AS z,

FROM $table
),
pairs AS ( -- 2. form line segments: start point + offsets
SELECT
z, x AS x0, y AS y0,
LEAD(x) OVER w - x AS dx,
LEAD(y) OVER w - y AS dy

FROM source
WINDOW w AS (PARTITION BY z ORDER BY x ASC)
),
indices AS ( -- 3. integer indices up to the max rise or run
SELECT UNNEST(
range(
SELECT GREATEST(MAX(ABS(dx)), MAX(ABS(dy)))
FROM pairs

)
) AS i
),
raster AS ( -- 4. perform line rasterization
SELECT -- case where run is greater than rise
z,
x0 + i AS x,
y0 + ROUND(i * dy / dx) AS y
FROM pairs, indices
WHERE ABS(dy) <= ABS(dx) AND i < ABS(dx)
UNION ALL
SELECT -- case where rise is greater than run
z,
x0 + ROUND(SIGN(dy) * i * dx / dy) AS x,
y0 + SIGN(dy) * i AS y
FROM pairs, indices
WHERE ABS(dy) > ABS(dx) AND i < ABS(dy)
UNION ALL
SELECT -- case of final line segment end point (no offsets)
z, x0 AS x, y0 AS y
FROM "pairs" WHERE dx IS NULL

),
points AS ( -- 5. perform per-column, per-series normalization
SELECT
x, y
1.0 / COUNT(*) OVER (PARTITION BY x, z) AS w

FROM raster
WHERE (x BETWEEN $x0 AND $x1) AND (y BETWEEN $y0 AND $y1)
)
SELECT -- 6. sum normalized weights from all series
x + y * $width AS index,
SUM(w) AS weight

FROM points
GROUP BY index

In the query above, $x and $y correspond to input columns mapped to
spatial dimensions (over the domains [$x0, $x1] and [$y0, $y1]),
while $z is a categorical variable indicating different line series and
$width is the width of the output grid in raster cells. The resulting grid
of line densities can optionally be smoothed in the browser, using the
inherited functionality of the raster mark.



B ADDITIONAL EXAMPLES

Here we share additional examples of Mosaic applications, supplement-
ing the examples presented in §7.

B.1 Neuron Spike Measurements

Fig. 18: Time-series heatmap of neuron spike activity along a probe.

We apply Mosaic to data from neuroscience collaborators. Figure 15
shows raw electrical data, which is important to visualize in order
to assess potential errors of subsequent analysis algorithms. Here,
Figure 18 is a raster density map of algorithmically extracted neuron
spikes from a single experimental run, consisting of 8.3M rows in a
95MB Parquet file. A panZoom interactor enables real-time panning
and zooming.

Our collaborators were excited that we were able to write Mosaic
code within just a few minutes to visualize and interact with their
data. Their current workflow involves long-running batch processes to
generate static images for each experimental session. With Mosaic, we
are able to provide real-time interactive visualizations on-demand. We
are now working jointly on richer dashboards for examining the results
across many experimental runs.

B.2 X-Ray Scatter Images

Fig. 19: An X-ray beam pointed at a sample (right) creates a scattering
pattern (left). Selecting a region of the sample shows pronounced rings
in the scattering image.

Here Mosaic visualizes data from beamline X-ray scattering experi-
ments that help understand physical materials’ properties. Figure 19
shows a scatter image (left) and the position of the X-ray beam on
the sample (right). Scientists can see the aggregated scattering image
for a region by selecting regions of the sample. The data collected
at Brookhaven National Lab shows scatter images of a coffee stain
with 1,776 scatter images in this dataset resulting in 1.9B data points.
While updates are real-time, similar to the 100% sample Gaia raster

case in our benchmarks (§8.2), index creation is not ideally interactive.
Precomputation of indexes amortizes this cost, enabling immediate
interaction in subsequent sessions.

B.3 Zoomable Gaia Sky Map

Fig. 20: An overview+detail configuration of the Gaia sky map. Selecting
a small region of the sky (top) resolves the Andromeda galaxy (bottom).

In addition to the Gaia dashboard of Figure 1, we built the alternative
overview+detail sky map shown in Figure 20. Rather than apply a
cartographic projection, here the original right ascension (ra) and
declination (dec) coordinates are plotted directly. Brushing in the
overview region produces a zoomed-in view in the detail panel. A
patch of sky is selected in Figure 20 (top), revealing the Andromeda
galaxy (bottom).
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