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ABSTRACT
As people accumulate hundreds of “friends” in social me-
dia, a flat list of connections becomes unmanageable. Inter-
faces agnostic to social structure hinder the nuanced sharing
of personal data such as photos, status updates, news feeds,
and comments. To address this problem, we propose so-
cial topologies, a set of potentially overlapping and nested
social groups, that represent the structure and content of a
person’s social network as a first-class object. We contribute
an algorithm for creating social topologies by mining com-
munication history and identifying likely groups based on
co-occurrence patterns. We use our algorithm to populate
a browser interface that supports creation and editing of so-
cial groups via direct manipulation. A user study confirms
that our approach models subjects’ social topologies well,
and that our interface enables intuitive browsing and man-
agement of a personal social landscape.
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INTRODUCTION
Today’s online experience depends increasingly on social in-
teraction. Sites such as Facebook and LinkedIn have evolved
from recreational to socially essential; media-sharing plat-
forms such as Flickr and LastFM attract large numbers of
users; collaborative productivity tools such as Google Docs
continue to grow in popularity. However, while our online
data and behavioral patterns are increasingly contextualized
by our personal social networks, we lack a corresponding
mechanism for defining, organizing, and maintaining differ-
ent parts of these networks.
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Figure 1. Our social topology browser, showing social groups automat-
ically mined from e-mail data. Individuals can be members of multiple
groups; subgroups within groups are nested hierarchically.

Current social networking activity is characterized by coarse-
grained information sharing, leading to frequent under-sharing
and over-sharing. To target information to specific segments
of their social networks, users must engage in time-consuming
and potentially redundant tasks, such as constructing contact
groups on Gmail, maintaining friends’ lists on Facebook, or
enumerating all people with whom to share a Flickr album.
Most users find these tasks tedious and painful to do [19].
Moreover, the creation of static social groups fails to cap-
ture the nuances of social context that exist in real life. As
human relationships evolve and the strength of social ties
change, the memberships of these social groups must also
be dynamically updated.

In response, we introduce the concept of a social topology:
the structure and content of a person’s social affiliations,
consisting of a set of possibly overlapping and nested so-
cial groups. Permitting overlapping groups allows a social
topology to accurately represent people who perform multi-
ple roles simultaneously in one’s life, such as the colleague
who is also a hiking buddy, or a family member who shares
a particular hobby. Permitting nested groups allows repre-
sentation of social affiliations at various levels of granular-
ity, such as best friends within friends. Although a person
may have an implicit mental model of her social topology,
its nuanced complexity and sheer volume make it difficult



to capture and maintain manually. We hypothesize that an
algorithm for automatic social topology extraction, coupled
with an interface for storage and maintenance, can facilitate
social organization and information sharing.

We observe that many people already have a large dataset
that latently and accurately reflects their social topology over
time: personal email.

Email has been a common medium for online social interac-
tion for many years. It is estimated that there are over 1.3 bil-
lion email users worldwide and that this number will grow to
1.8 billion by 2012 [17]. Mainstream users routinely acquire
and store large volumes of email, thanks to the availability
of cheap storage and the ubiquity of providers offering free
email service.

Email can be viewed as a social system in which users rou-
tinely express sharing rights over their information. Because
each message defines a specific set of recipients, email cap-
tures, in situ, both social relationships and changes in social
relationships over time at fine granularity. Thus, email offers
a fine-grained sharing model closest to the one we imag-
ine for social networks. While mailing lists are a conve-
nient grouping mechanism for email, they are typically used
for formal group membership. Many more groups, such as
friend and family units, are formed in an ad-hoc manner.

Using this insight, we have built a system for constructing a
user’s social topology from their email, using a combination
of data mining techniques and user input to finesse the topol-
ogy’s accuracy. Users may tune automatically generated
topologies, and the system can semi-automatically maintain
topologies over time by highlighting changes in social struc-
ture. We note that while we have used email as a primary
and motivating dataset, our approach is easily extended to
incorporate other forms of communications media.

Our research contributions include:

• The introduction of social topologies as first-class objects
that represent social groups at multiple granularities.

• A new browser interface for social topologies (Figure 1).

• A novel and efficient algorithm for constructing a social
topology from e-mail data. The algorithm detects commu-
nity structure among a person’s contacts, and is distinctive
in its inference of overlapping and nested groups.

• A publicly available system called SocialFlows, acces-
sible as a web application1, that lets users interact with
the social topology deduced from their email data. So-
cialFlows also allows users to export the created groups
to Facebook as friends lists and groups, and to Gmail as
contact lists.

• A user study evaluating the quality and accuracy of our
system. Results suggest that our algorithm models users’
social topologies sufficiently well, and that our interface
enables intuitive topology browsing and management.

1Available at http://mobisocial.stanford.edu/socialflows

The rest of this paper proceeds as follows: we first survey
related work, then discuss our motivation and techniques for
extracting social topologies from email. We next present the
details of our topology mining algorithm. Next, we describe
our user interface for browsing and editing generated topolo-
gies, including a brief description of our web application im-
plementation. Finally, we present the design and results of
our user study.

RELATED WORK
To contextualize our research, we discuss prior work in so-
cial network analysis on community detection, and visual-
ization of personal contacts.

Detecting Overlapping Communities in Social Networks
Social network analysis is a research area that has received
significant attention, especially in the last several years. The
correspondence between real-world social relations and so-
cial media ties has been confirmed on several occasions [6,
20]. The specific problem of community detection has been
studied both for social graphs where a global view of the
network is available [4, 10, 11, 12, 13, 15, 20, 26], and
for egocentric networks, where only one individual’s view
is available [2, 6, 12].

Clustering-Based Approaches
A plethora of work exists on clustering algorithms for so-
cial networks, and we do not discuss them in depth here;
for an overview, see Wasserman and Faust [24]. We note
that standard methods of hierarchical agglomerative cluster-
ing are not adequate for our purposes, since they partition
the network into non-overlapping communities. Therefore,
we focus only on prior work that allows individuals to be
classified into multiple communities. We further note that
these methods, unlike ours, do not have a quantitative notion
of subsumption, we use in our inference of nested groups.

Huberman et al. analyze a network of 485 people’s email ac-
tivity within an organization over four months [20]. Unlike
our model, edges are drawn between the sender and each
message recipient, but not between co-recipients. Eventu-
ally, edges between sender-recipient pairs beneath a thresh-
old are dropped, and an algorithm based on edge between-
ness centrality [24] detects non-overlapping groups. The al-
gorithm runs multiple times, breaking ties randomly, and ag-
gregates the results. Overlapping clusters are detected by
weighting each individual’s membership in a community by
the frequency of that individual appearing in the cluster over
all of the algorithm’s iterations.

Palla et al. present an algorithm to identify overlapping com-
munities in unweighted networks [16]. They consider glob-
ally oriented networks only, and do not consider email datasets.
However, their algorithm bears a theoretical parallel to ours:
potential communities are generated from smaller graph units
(in their case, cliques; in ours, frequent subsets), resulting
in hypothetical communities that may not exist in the origi-
nal graph. Their algorithm requires significant computation
time, which would likely be unsuitable for widespread usage
by consumers.



Non-Clustering-Based Approaches
Moody and White present a method of cohesive block mod-
elling in which graph nodes are recursively clustered into
“blocks” based upon their cohesiveness in the graph [13].
The resulting blocks tend to be nested, but overlapping blocks
are possible.

Performing text analysis on social data (such as email) pro-
vides additional axes along which to group individuals. Cu-
lotta et al. take a unique approach in which a social graph
constructed from an e-mail corpus is augmented with data
mined from the Internet [2]. Links on the social graph are
unweighted and extracted from e-mail headers, text, and on-
line webpages. Each individual is tagged with keywords par-
ticular to his/her expertise. Given sufficient social context,
one can imagine using such keywords to refine socially sim-
ilar groups derived by our algorithm.

In later work, McCallum et al. focus on developing machine
learning methods for discovering individual roles in a social
network [12]. Given an e-mail corpus, their method models
topic distributions over sender-recipient pairs. All sender-
recipient pairs relevant to a topic can then be queried from
the graph. McCallum et al. analyze both globally-oriented
and egocentric networks with promising empirical results.

Zhou et al. propose generative Bayesian models to mine “se-
mantic communities” within the Enron email corpus [26].
Resulting communities are labeled with a topic description.

Recently, Gmail offers an auto-suggest feature for email re-
cipients. Once the user has typed in a few recipients for a
message, Gmail suggests other candidates based on implic-
itly derived groups [18]. These implicit groups are not ex-
posed to the user and cannot be directly viewed or edited.
Our algorithm identifies socially notable groups in one’s so-
cial topology, a function not provided by Gmail’s algorithm.

Our Approach
To our knowledge no prior work focuses on identifying over-
lapping and nested communities in an egocentric network.
In fact, our approach bears more similarity to prior work on
association rule mining by Agrawal et al. [1] than to so-
cial network analysis. Moreover, leveraging communica-
tions data (such as email) yields a contextually rich social
graph: incentives and costs involved in repeated communi-
cations inform the meaningfulness of ties more strongly than
a one-time “friending”.

Visualizations of Personal Contacts
Researchers have developed a number of visualizations of
one’s personal contacts. For example, Heer and Boyd’s Vizster
depicts egocentric networks extracted from online social net-
works[8], including exploration of communities identified
via linkage-based clustering [15]. Others visualize personal
e-mail archives with applications ranging from workplace
productivity to personal reflection [14, 21, 22, 23].

Two systems highly relevant to our work on social topolo-
gies are Whittaker et al.’s ContactMap [25], and Fisher’s
Soylent [5].

ContactMap provides an editable visualization of personal
contacts, spatially organized and colored by group mem-
bership. Akin to SocialFlows, ContactMap allows contacts
to be placed into multiple groups and mines a user’s email
archive to seed the display. Our work similarly is predicated
on the insight that communication patterns provide rich in-
formation for mining nuanced social structures, but our sys-
tem is unique in its ability to represent both overlapping and
nested groups.

Moreover, ContactMap does not automatically suggest group
structures, instead requiring manual layout and assignment
of each contact. The designers of ContactMap attempted to
automatically seed groups, but encountered difficulties, not-
ing that “users were not satisfied with these automatic tech-
niques, arguing that they were neither intuitive nor useful
for social communication tasks. Rather than ties of greater
or lesser strength, users wanted to group contacts based on
their affiliation, work project, or social category.”

We, too, have found that mining social groups that are ac-
ceptable to users is a challenging task. However, our largely
positive user study results present evidence that the combi-
nation of automatic seeding and direct manipulation editing
can improve the creation and management of acceptable so-
cial topologies.

Soylent comprises a visual analytic system designed to aid
exploration of personal, social data with an end goal of in-
corporating social context into collaborative work. Soylent,
too, uses email as the primary data source for social contact
information. It provides several linked visualization views
for data navigation which allow filtering and drill-down into
the underlying data. A main goal of Soylent is to facilitate
the discovery of different types of social groups based on
collaborative behavior properties. Several group types are
described in the paper.

Unlike SocialFlows and ContactMap, Soylent functions as a
general analysis tool rather than an end-user system. More-
over, it does not focus specifically on the task of eliciting
significant social groups. While users may explore social
group structures within Soylent, discovering and maintain-
ing group identity is not supported.

SOCIAL TOPOLOGY MINING ALGORITHM
Instead of asking users to manually craft their social topolo-
gies, we infer them automatically from users’ online com-
munication patterns. Our social topology mining algorithm
takes, as input, the most recent 2 years’ worth of a user’s sent
mail folder, and outputs a social topology. In this section, we
first introduce the core concepts used in our algorithm. We
then present the algorithm itself. Finally, we comment on
our data filtering and preparation techniques.

Social Molecules
The concept of a social molecule is central to social topol-
ogy structure. A social molecule is a group of people that
comprise a logical social unit. Informally, we envision a so-
cial molecule as a set of people that co-occur as communica-



tion recipients so frequently that splitting them makes little
sense. Note that an individual may belong to several social
molecules: consider a Math study group and a group of col-
lege roommates, for example. While people might belong to
both groups, each group’s constituents perform a clear social
role.

Given a set of emails, a natural proxy for its social molecules
is the collection of its unique recipient sets. However, this
approach will result in an unruly topology consisting of too
many groups. The goal of our algorithm is to reduce the
noise in the topology by eliminating minor subsets of groups
and by merging highly overlapping groups. We refer to the
former case as identity subsumption and the latter as identity
unification.

Identity Subsumption
Let us first present the intuition behind identity subsumption.
Given two groups of message recipients g1 and g2, g1 ⊂ g2,
we need not include g1 in the social topology if it receives
relatively few messages compared to g2. That is, g1 loses
its identity if it can be represented well enough by g2. Sub-
sumption of g1 by g2 introduces an inaccuracy in represen-
tation, which can be measured by the amount of information
leaked were messages sent to g1 shared with g2. If this leak
is below some threshold, we can subsume g1 with g2.

Let msgs(g) be the number of messages received by group g.
Any message received by a group is necessarily received by
a subgroup, thus msgs(g1) ≥ msgs(g2), for all g1 ⊂ g2. For
example, if 30 messages were sent to g1 = {A,B,C} and
20 messages were sent to g2 = {A,B,C,D}, msgs(g1) =
50 and msgs(g2) = 20.

To measure information leak, we define the sharing error
(serr) of group g1 with respect to a superset g2 as

serr(g1, g2) =
(|g2| − |g1|)× (msgs(g1)−msgs(g2))

|g2| ×msgs(g1)

The sharing error captures the ratio of non-recipients to the
total message volume, should the subset be subsumed by the
superset. The total number of non-recipients is the product
of the number of messages sent only to the smaller group
and the number of non-recipients in the larger set. The mes-
sage volume is the product of the number of messages sent
multiplied by the size of the larger group.

Suppose group {A,B,C} received 103 messages, and 100
of these also include D.

serr({A,B,C}, {A,B,C,D}) =
(4− 3)× (103− 100)

4× 103
= 3/412.

Sharing error is low when g1 is relatively similar to g2 and a
small fraction of messages are directed only to g1. The iden-
tity of group g1 is subsumed by g2 if serr(g1, g2) is less than
the self-identity threshold, an algorithm parameter discussed
below.

Identity Unification
Members of logically cohesive groups might not all appear
together on any messages. For example, consider a research
group of PhD students that spans several years. Graduated
group members might never appear on an e-mail with new
group members. However, we may wish to invite all the
members to an alumnae party. In such cases, we create the
overall group by synthesizing it from smaller subsets.

To measure the similarity between two groups, we use the
Jaccard metric, a standard measure of set similarity. The
Jaccard similarity of groups g1 and g2 is defined as:

|g1 ∩ g2|
|g1 ∪ g2|

Two groups are unified if their Jaccard similarity exceeds a
parameter, called the similarity threshold.

Algorithm Parameters and Default Values
Our algorithm is tuned via the following parameters:

1. Minimum group size: the number of people that must be-
long to a group for it to be part of the topology. As we are
uninterested in individuals, the default value is 2.

2. Minimum message count: the number of messages in which
a group must appear in the recipient list for the group to
be considered significant. The default is 5 since only the
last 2 years’ worth of mail is considered.

3. Self-identity threshold: the maximum sharing error we are
prepared to accept when one social molecule subsumes
another. We have empirically found that a default thresh-
old of 0.3 generates useful groups.

4. Similarity threshold: the minimum Jaccard similarity be-
tween two groups before being unified. The default simi-
larity threshold is 0.35. This prevents the algorithm from
combining two groups of two, with one person in common
between them.

The Algorithm
Our algorithm comprises 3 phases. The first phase extracts
relevant social molecules, according to the minimum group
size and self-identity threshold parameters, from the input
email corpus. Recall that a person may belong to multiple
social molecules. This crucial property is what enables over-
lapping groups later on.

The second phase of the algorithm merges the social molecules
from Phase 1 into larger groups. Merging is based on molecule
co-similarity—controlled by the similarity threshold. The
result of Phase 2 is a set of overlapping groups, each of
which may or may not occur uniquely on a single message
in the corpus.

The final phase of the algorithm creates a hierarchical struc-
ture of the topology for visualization.

Phase 1: Social Molecules and Identity Subsumption
Phase 1 extracts a relevant set of social molecules in the
user’s social graph. It outputs social topology, T , consist-
ing of all the extracted social molecules.



1. Initialize the topology. Add each unique message recipi-
ent group, g, to T if |g| is larger than the minimum group
size threshold.

2. Find all candidate social molecules. Add to T pairwise
intersections between all pairs of groups in T meeting the
minimum group size threshold, until no more new inter-
sections can be found. This generates the maximal sub-
sets.

3. Remove insignificant social molecules. Remove from T
any candidate set whose message count falls below the
minimum message-count threshold.

4. Subsume irrelevant social molecules. To calculate iden-
tity subsumption, we arrange the social molecules in T in
decreasing order of group size. We iterate through the list
of social molecules, dropping all molecules that can be
subsumed by any of the larger molecules that remain.

Phase 2: Manufacturing Supergroups
Phase 2 adds to the social topology cohesive supergroups
derived from the social molecules generated in Phase 1 us-
ing identity unification. It iteratively creates new groups by
combining the pair of groups that have the highest similarity
across all groups inferred thus far, until this similarity falls
below the similarity threshold. Note that some of the groups
created by Phase 2 may be “manufactured” – that is, they
do not exist in their entirety in any message in the original
email corpus.

Phase 3: Organizing the Groups in a Hierarchy
Phase 3 of our algorithm constructs a hierarchy of social
groups. It computes an ordering that prioritizes groups by
their total number of received emails, while also placing sim-
ilar groups in close proximity to one another.

We define the parent of a group g in the social topology T
to be the proper superset that has the smallest sharing error
with respect to g. The algorithm applies two sorting criteria
to order groups at the same hierarchy level:

1. Significant groups should be displayed first. A group’s
significance is defined by its group mass, which is the sum
of the messages received by each member in the group.

2. Groups similar to each other should be shown together as
a unit to facilitate subsequent group merging and splitting
operations by users. Two groups are considered similar if
their Jaccard similarity is above a pre-defined threshold.

For each level of the hierarchy, the algorithm displays the
most significant group and its children, followed by signif-
icantly similar groups. This process is repeated until all
groups are assigned to the hierarchy.

Data Preparation
In this section, we detail our methods of filtering and clean-
ing our data before running it through the algorithm.

Sent mail. Although our approach would work on any email
corpus, we restrict input to our algorithm to comprise only
users’ sent mail folders. Firstly, sent messages tend to be
the best reflection of the user’s ties. Sending email involves

time and active effort on the user’s part, so each outgoing
message has a non-zero cost. Secondly, considering only
sent messages avoids the problem of pollution due to spam.
Finally, the number of messages sent to a person or group
is representative of the relevance of that relationship to the
sender. While we do not claim that e-mail frequency gives
an ordering over relationship strength, we find empirically
that the sent message count corresponds with tie strength at
a coarse granularity.

Discounting messages over time. In initial studies on our
own data, we found that social groups inferred from older
messages were often less relevant than groups inferred from
newer messages. In our current implementation, we truncate
the email corpus to a timespan of 2 years. In future work we
will investigate weighting functions over historical periods.

Entity resolution. Because email addresses change over time,
identifying unique individuals in the input corpus is essential
when producing a structurally correct social topology. Entity
resolution of email addresses is an open research problem.
Some current work attempts to use the social graph structure
itself to perform sophisticated disambiguation of graph enti-
ties [2, 9]. We take a middle-ground approach by unifying
all entries whose name or email address are equivalent. This
is made possible by the fact that most email systems follow
the RFC-822 syntax. We use case insensitive string compar-
isons for determining name equivalence, and are tolerant of
common variations in naming patterns, such as “Firstname
Lastname” versus “Lastname, Firstname”. We find that this
approach works well in practice on datasets encountered in
our experiments.

Mailing list removal. Mailing lists are problematic for our
algorithm on two levels: they tend to have high frequencies
and it is difficult to determine explicit mailing list member-
ship. Currently we simply remove all unambiguously iden-
tifiable mailing lists (addresses containing @googlegroups,
@yahoogroups or @lists) from recipient lists in the input
corpus. In the future, we would like to expand mailing lists
into their membership sets.

SOCIALFLOWS: A SOCIAL TOPOLOGY BROWSER
In this section, we describe SocialFlows2, a browser inter-
face that allows users to explore and modify social topolo-
gies, as well as port final topologies for use in Gmail and
Facebook.

Presenting Social Topologies
We visualize social topologies by showing mined groups
and their constituent contacts. Contacts are represented by a
compact grid of profile photos. Profile photos facilitate easy
identification of a contact’s membership across groups and
provides a more engaging experience; prior visualization re-
search suggests that images are the primary visual cue by
which users identify contacts and communities [8, 25]. A
placeholder picture labeled with the contact’s name is dis-
played for social contacts without a profile photo. The order
2A video demonstration of the user interface is available at
http://mobisocial.stanford.edu/socialflows/SocialFlowsDemo.mov



Figure 2. The SocialFlows user interface. Users can explore, browse and edit their social topology. Annotated points of interest highlight: (a)
hierarchical nesting of subsets; (b) editable group labels; (c) tooltip and delete option on mouse hover; (d) new group creation; (e) group merge tools;
(f) additional group editing tools; and (g) option to add a new contact.

in which social contacts are displayed is consistent across
groups, sorted by descending frequency of correspondence.
Contact names and details are revealed by a tooltip upon
mouse hover and selecting a person also highlights all oc-
currences of that person in other groups. Hierarchical struc-
ture is depicted using an indented tree layout, akin to a file
system browser. SocialFlows provides an expand-contract
control (A in Figure 2) for each social group containing sub-
sets.

Editing Social Topologies
The social topology automatically mined from email may
not resonate precisely with the user’s own mental model of
social groups. Nonetheless, mined topologies can provide a
very helpful starting point from which to refine one’s model
of personal contacts. To this end, SocialFlows allows users
to edit their social topology via group composition and mod-
ification. Users can edit the composition of a social group by
dragging and dropping contacts between groups, deleting a
contact from a group by hovering over and clicking on the
revealed X-mark (C in Figure 2), or adding a new contact to
a group through the Add a Contact icon (G in Figure 2).

Users may also find it useful to consolidate social groups by
merging two or more selected groups. SocialFlows facili-
tates this task by placing strongly similar groups near one
another, as described under Phase 3 of the algorithm in the
previous section. A user can then specify groups to merge
by clicking on each respective group’s Merge checkbox (E in
Figure 2), and specify the destination group for the merged
result by clicking that group’s Merge button. All merged
groups, except the destination group, are removed.

In addition, new top-level social groups can be created us-
ing the Create Group button (D in Figure 2). The per-group
manipulation options (F in Figure 2) provide users with the

ability to create a new child subset ( ) out of an existing so-
cial group, save ( ) a group, or delete ( ) a current social
group. Users can label their social groups via in-place text
editing (B in Figure 2). Users can choose to port their saved
groups to Gmail, as contact lists, or to Facebook as friend
lists and groups.

SocialFlows also enforces invariants on the social landscape.
For example, a parent in the social topology hierarchy is al-
ways a superset of its children and descendants and, con-
versely, children social groups are always subsets of their
ancestors. This invariant is maintained in the user interface;
users, for example, can add friends or social contacts to a
child social group, and the added contacts are then perco-
lated up the SocialFlows tree to each superset. Likewise,
deleting a social contact from a parent social group results
in that same contact being deleted from all subsets.

SOCIALFLOWS IMPLEMENTATION
As email is highly private, we package our email mining al-
gorithm and SocialFlows as a downloadable application that
runs on a user’s own computer using Java Webstart. This
lets our mining algorithm run over the email account that the
user provides, as well as on locally stored mailbox archives.
The application asks a user to provide an email account from
which it can extract sent email messages (e.g., using POP3
or IMAP) and runs the social topology miner to deduce a
user’s social groups. The generated social topology is then
presented in the SocialFlows browser.

Visualizing and exploring social topologies becomes a more
engaging experience when friends and social contacts are
represented by their photos instead of just their names. How-
ever, as most people do not have profile photos in their email
address books, we have also made SocialFlows available
as a web application that lets users supply their Facebook



credentials through Facebook OpenGraph [3]. This enables
SocialFlows to integrate social contacts from a user’s email
with the user’s Facebook friends and their respective profile
photos. Matching is done using a name-matching heuristic,
and if a match is not found, a placeholder profile picture la-
beled with the contact’s name is displayed instead.

Note that only the resulting social topology is provided to the
SocialFlows web application for presentation to the user. All
intermediate results are confined to the user’s local machine,
thus preserving the privacy of the user’s email.

USER EVALUATION OF SOCIAL TOPOLOGIES
To assess the effectiveness of our approach, we conducted
a user study comparing our SocialFlows system to contact
groups in Gmail which is a reasonable representation of state
of the art approaches to online social contacts organization.
The goal was to assess the degree to which our automatically
computed social topologies assisted users in managing their
social contacts. We hypothesized that not only would users
find it easier to create social topologies using a seeded topol-
ogy generated by our algorithm, but also that they would find
these topologies more useful than those constructed from
scratch. We were also interested in general assessments of
our interface.

Methods
Social groupings are highly contextual, and so evaluations
of generated topologies may depend upon the task at hand.
Simply presenting a topology and asking users whether or
not it is “good” may not be suitably informative. In our
study, we attempted to control situational context by giving
users a set of prompts in the form of concrete information-
sharing scenarios (described subsequently). Based on these
prompts, users were asked to construct contact lists that they
might use within the given task scenarios. Each user was
asked to perform this task twice: once from “scratch,” with
no suggested topology structure, and once using an editable
topology generated from their e-mail data using our algo-
rithm.

Our study used two interface conditions: Gmail’s Contact
Manager [7] and SocialFlows. In the first condition, we
asked users to design a partial social topology from scratch
using Gmail’s contact group management interface. In the
second task, we asked users to build a social topology us-
ing our SocialFlows interface with a topology seeded by
our algorithm. Both interfaces allow users to create and
delete overlapping social groups, and edit social groups by
adding and removing recipients from a contact list. The
Gmail interface represents contact groups as a flat list of
groups, whereas the SocialFlows interface represents proper
subsets hierarchically. We randomized interface presenta-
tion order across subjects. Subjects were given a couple
of minutes to navigate each interface before starting a task;
once started, subjects were given a maximum of 15 minutes
to complete each task.

Due to privacy constraints, we did not observe participants’
final topologies directly. Instead, we collected participants’

feedback as well as descriptive statistics about the topolo-
gies in order to perform our evaluation. We measured how
long it took subjects to complete a task, and upon completion
asked them to state why they stopped (e.g., task completed
successfully, ran out of time etc.). At the end of the study,
we asked subjects to rank the efficiency of each interface and
the usefulness of the topologies, assuming they were able to
export them to other online services. Finally, we encouraged
them to comment openly on their experiences.

We chose to use the Gmail interface as a control (rather than
Facebook, for example) for several reasons. First, Gmail
and SocialFlows have identical contact sets, which is nec-
essary for fair comparisons between tasks. Second, Gmail’s
contact group management interface is representative of the
state of the art in online contact organization, which gives
our results ecological validity over and above a simple com-
parison of “from scratch” vs. “from template” conditions in
the SocialFlows interface only.

19 subjects participated in the study. Most participants were
students in our computer science department. In pilot stud-
ies, we found that results varied widely depending on two
factors: (1) whether the e-mail data input to our system came
from the user’s primary e-mail account, and (2) the vol-
ume of e-mail data input to the algorithm. All datasets were
truncated to contain messages that had been sent in the last
2 years only; however, we found that users with relatively
small sent mail folders (< 1,000 messages) got sporadic re-
sults. Combined with our decision to use the Gmail interface
as a control, we limited the study to users who used Gmail as
a primary e-mail account, and had more than 1,000 messages
in their sent mail folder.

In all cases, our email analysis algorithm ran on users’ own
machines, typically their laptop computers. The algorithm
itself is fast, taking less than a second to complete for all
users. Most of the waiting time was to connect to the email
server and fetch message headers.

Task Prompts
To contextualize the study tasks, we developed four sample
information-sharing questions. We asked subjects to build
a partial social topology based upon the answers to these
(and similar) questions. Before attempting any tasks, we
presented subjects with a clear definition and examples of
a social topology. We then informed them that their topol-
ogy should make answers to such questions composable, as
opposed to creating four groups that explicitly answer the
given questions. We used the following prompts:

1. After a long time away, you are returning to town where
you have several good friends (e.g., the town where you
grew up). Unfortunately, you will be in town for a few
days only, and you will have time to see just a few, essen-
tial people. Who would you inform of your travel plans?

2. You’re turning 21 and want to throw a party. Who would
you invite?

3. You have a few extra tickets to an event (e.g. basketball
game, concert) that you’re really excited about. Assuming



Avg. Min Max Std. Dev.
Initial Groups 476.7 104 920 251.5
Subsumed Groups 82.8% (398.9) 2.7% (13) 98.4% (872) 23.6% (244.4)
Unified Groups 3.3% (17.1) 0 32.3% (155) 7.2% (35.3)
Final Groups 20.5% (94.8) 1.6% (2) 129.4% (624) 30.0% (143.6)
Root-level Groups 5.2% (27.4) 1.6% (2) 15.0% (129) 3.2% (28.0)

Table 1. Summary statistics of social topologies generated by our algorithm from subjects’ email data.

that you cannot sell the tickets, who would you invite?
4. You have just been diagnosed with a medical condition

(sufficiently severe that you would like to maintain some
confidentiality, but not top secret). Who would you share
this information with?

We designed these questions to be general enough to apply
to a broad range of users, but specific enough to target de-
limited social groups and varying tie strengths. We expected
the questions to elicit overlapping social groups. Finally, we
were careful to design questions that would present realis-
tic scenarios to most users. However, we do note that the
questions assume that most users have some assortment of
family, friends and coworkers in their social networks, and
communicate with them via email.

Results
Of the 19 subjects, 10 used the Gmail interface first and 9
used SocialFlows first. As we found no statistically signif-
icant differences between the response distributions condi-
tioned on presentation order, we focus our discussion on the
pooled results only. We summarize the behavior of our al-
gorithm (used in the SocialFlows interface) in Table 1. Ta-
ble 1 shows that on average individuals write to close to 500
different groups in a course of 2 years. Presenting all such
groups in a list to the user would not be useful. Our al-
gorithm reduces the total number of groups by a factor of
5; when organized into a hierarchy the reduction is even
smaller, and the root groups typically comprise 5% of the
number of original recipient sets. On average, then, final
topologies contain approximately 100 total groups, with ap-
proximately 30 root groups.

Interface Out of Time Satisfied Too Hard Bored
Gmail 21% (4) 42% (8) 26% (5) 11% (2)
SocialFlows 21% (4) 74% (14) 5% (1) (0)

Table 2. Task stopping reasons.

Table 2 and Figure 3 summarize subjects’ reasons for com-
pletion and completion times, respectively. Although users
were told that they should take only 15 minutes to complete
each task, several users were disinclined to stop after the
time limit. Of the 19 users, 6 users abandoned the task based
on the Gmail interface midway, citing that it was too un-
wieldy to construct their envisioned social topologies. To
assess the significance of the time to completion results, we
used a paired Wilcoxen sign rank test, modeling task aban-
donment as “infinite”3. We find that performance using So-
cialFlows is significantly faster (p = 0.006).
3We used a non-parametric test as the times are not normally dis-
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Figure 3. Median task-completion times (minutes). Error bars show
median absolute deviations (MAD). The Gmail result is based on only
13 of the 19 users, as 6 found the task intolerable and abandoned it.
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Figure 4. User study ratings. (a) Ease of social topology construction.
(b) Perceived usefulness of topology for online sharing tasks. Note that
not all counts match, as some subjects chose not to respond.

We note that most users (74%) stopped creating their So-
cialFlows topologies because they were satisfied with the re-
sult; comparatively fewer users (42%) were satisfied with
their Gmail topologies upon task completion. A chi-square
test of these counts indicates significance at the p <0.1 level,
but not at p <0.05. This is unsurprising, given the low num-
ber of cell counts. Binning responses into “satisfactory” and
“unsatisfactory” (out of time, too hard, and bored), we find
that SocialFlows results in significantly more satisfactory
outcomes (χ2(1,38) = 3.886, p = 0.049). One explanation
noted by subjects is that drawing one’s social topology from
memory is difficult: people often forget to add individuals,
or construct links between certain groups. Another expla-
nation is that having a ready-made framework significantly
reduces the cost of social topology construction.

Figure 4(a) presents users’ ratings of the efficiency of social
topology creation in each interface. Users were asked to pro-
vide these rankings after completing both studies. As we did
not use a true Likert scale for these rankings, we treat the
results as ordinal and use a paired Wilcoxen sign rank test
for significance (we note that running an ANOVA instead,
treating responses as values from 1-5, gives similar results).
We found that SocialFlows was rated as significantly easier
to use (p = 0.007). As the Gmail interface represents the cur-
rent state of the art in contact organization, this result argues

tributed. The test operates on ranks, so “infinite” times are handled
appropriately.



that the SocialFlows interface provides a superior mecha-
nism for creating social topologies. We acknowledge that
our results do not indicate how much of the efficiency gain
is apportioned to the interface versus the algorithmically-
seeded groups; however, both user comments and user rank-
ings of group quality, presented in Figure 4(b), support the
hypothesis that a large portion of the efficiency gain is, in
fact, due to the seeded topology.

To rate the quality of social topologies, we asked users to
rank the perceived usefulness of their topologies under the
hypothetical context that groups from their topologies could
be exported to online services such as Facebook. The results
are presented in Figure 4(b). We again use a paired Wilcoxen
sign rank test on the ordinal rankings, finding that the differ-
ences between the Gmail and SocialFlows interfaces do not
rise to a level of statistical significance (p = 0.159). How-
ever, we do not believe that this is sufficient to reject the al-
ternate hypothesis that SocialFlows topologies are more use-
ful. First, the SocialFlows responses do have a larger propor-
tion of high scores. Second, 55% of participants stated that a
major motivation for using the SocialFlows interface would
be the quality and correctness of the groups.

User Impressions of the Gmail Task
Several users registered dislike of the Gmail task, citing te-
dium and lack of intelligent group suggestion as major draw-
backs. Another strongly cited aspect of the Gmail task was
the difficulty of creating a social topology from scratch. One
user noted that imagining the groups themselves was easy,
but deciding or remembering who should belong to which
group was extremely difficult: “I didn’t like how I had to
add each individual to each group individually; for instance,
I had to imagine a group from scratch, and then I’d try and
remember who should go in it, and then I’d forget people
and want to go back, etc.” Similarly, another user noted
that he/she had many friends, but “within that broad group
there is a range of comfort in communicating and trust,”
which suggests that granularity within groups is a natural
phenomenon. In summary, users were generally unhappy
about having to create topologies from scratch, complaining
that not only is the task tedious, but also that it is difficult to
remember who should be in which group.

User Impressions of the SocialFlows Task
Many users found the SocialFlows task interesting and novel,
and users’ comments about the task were generally positive,
tending to focus on group quality. We note that some degree
of novelty bias was likely present. 55% of users rated the
correctness and accuracy of the groups as a highly redeem-
ing feature of the algorithm; another highly ranked feature
(also at 55%) was the granularity of the social groups. De-
spite the praise for the algorithm’s correctness, many also
noted incomplete or missing groups. This was not surpris-
ing to them; they explained that the missing groups consisted
of individuals that they did not usually contact via email, or
whom they contacted using a different email account. Sev-
eral users suggested sourcing data from multiple email ac-
counts, social networks, and even from telephone records to
achieve improved results (c.f., [25]).

Users also provided helpful comments for improving the in-
terface. Some noted that using small photographs as icons
for contacts is sometimes confusing. A few users felt that
there were too many subgroups within root groups, indicat-
ing that the algorithm’s results may be too granular. Perhaps
the most interesting take away from these comments is that
users are able to identify incorrect aspects in a social topol-
ogy quickly and accurately, despite their inability to easily
create social topologies from scratch. Regardless of the effi-
ciency gains, this alone is a motivation for initializing social
topologies from existing data, as users can create reasonably
accurate topologies by making small corrections to, or par-
ing down, algorithmically generated topologies.

Summary
Our user study results are promising. User experiences with
the SocialFlows interface were both significantly faster and
rated significantly more efficient than their experiences with
the Gmail interface. While users’ rankings of perceived topol-
ogy usefulness were not significantly different, qualitative
responses argue that users found SocialFlows topologies to
be of higher quality. We hypothesize that the algorithmically
generated scaffolding provided in the SocialFlows interface
decreases the overhead cost of social topology construction
by allowing users to edit an existing topology instead of hav-
ing to build it up from scratch. Additionally, we suspect that
the scaffolding serves as a helpful prompt for articulating
social group structures that are naturally nested and overlap-
ping. As the Gmail contacts editing interface is reasonably
representative of the state of the art, our results provide evi-
dence that our contribution of the social topology structure,
a generative algorithm, and our interface provide a much im-
proved means of organizing a social landscape.

CONCLUSION
In this paper, we introduced social topologies: sets of possi-
bly overlapping and nested groups that model the structure
and content of a person’s social ties. Noting that email ac-
counts contain valuable data about one’s social affiliations
over time (c.f., [25]), we described an algorithm that derives
social topologies from sent email messages. We then pre-
sented our SocialFlows interface with which users can ex-
plore, modify and port their generated social topologies.

In our user study, subjects found our SocialFlows interface
to be significantly more efficient than a state-of-the-art inter-
face for social contacts organization, Gmail’s contact man-
ager. In fact, over half of the subjects who used the So-
cialFlows interface first (5/9) chose to quit rather than com-
plete the task using the Gmail interface due to the increased
effort. Users’ qualitative feedback similarly expressed ap-
preciation for the ability to quickly modify generated groups
in our interface. The study results support our hypothesis
that automatic generation of social topologies, which users
may then modify, improve users’ ability to create and main-
tain models of their social groups.

While in this paper we focused on email mining for the pur-
poses of developing and supporting a contact management
user interface, we believe that our social topology contribu-



tion has broader analytical applications. In particular, we
know of no work in social network analysis that focuses ex-
plicitly on creating hierarchical groupings that overlap to the
extent that ours do, despite the fact that this property follows
naturally from real-life social structure. Continuing research
along these lines is crucial: as socially-oriented online ser-
vices become increasingly prevalent, we anticipate that im-
proved means of organizing and maintaining our personal,
social landscapes will become absolutely necessary.
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