
Living Papers: A Language Toolkit for Augmented Scholarly
Communication

Jeffrey Heer
jheer@uw.edu

University of Washington
Seattle, United States

Matthew Conlen
mpconlen@gmail.com

University of Washington
Seattle, United States

Vishal Devireddy
vishald@cs.washington.edu
University of Washington
Seattle, United States

Tu Nguyen
tu21897@uw.edu

University of Washington
Seattle, United States

Joshua Horowitz
joho@uw.edu

University of Washington
Seattle, United States

ABSTRACT
Computing technology has deeply shaped how academic articles
are written and produced, yet article formats and affordances have
changed little over centuries. The status quo consists of digital
files optimized for printed paper—ill-suited to interactive reading
aids, accessibility, dynamic figures, or easy information extraction
and reuse. Guided by formative discussions with scholarly commu-
nication researchers and publishing tool developers, we present
Living Papers, a language toolkit for producing augmented aca-
demic articles that span print, interactive, and computational media.
Living Papers articles may include formatted text, references, exe-
cutable code, and interactive components. Articles are parsed into
a standardized document format from which a variety of outputs
are generated, including static PDFs, dynamic web pages, and ex-
traction APIs for paper content and metadata. We describe Living
Papers’ architecture, document model, and reactive runtime, and
detail key aspects such as citation processing and conversion of in-
teractive components to static content. We demonstrate the use and
extension of Living Papers through examples spanning traditional
research papers, explorable explanations, information extraction,
and reading aids such as enhanced citations, cross-references, and
equations. Living Papers is available as an extensible, open source
platform intended to support both article authors and researchers
of augmented reading and writing experiences.

CCS CONCEPTS
• Human-centered computing → Interactive systems & tools.

KEYWORDS
Academic Publishing, Augmented Reading, Interactive Articles
ACM Reference Format:
Jeffrey Heer, Matthew Conlen, Vishal Devireddy, Tu Nguyen, and Joshua
Horowitz. 2023. Living Papers: A Language Toolkit for Augmented Scholarly
Communication. In The 36th Annual ACM Symposium on User Interface

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606791

Software and Technology (UIST ’23), October 29–November 01, 2023, San
Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3586183.3606791

1 INTRODUCTION
For centuries, the format of academic articles has adhered to con-
ventions compatible with the movable type printing press: a “user
interface” consisting of textual, mathematical, and graphical con-
tent organized into sections, figures, and linkages such as footnotes,
bibliographic citations, and cross-references. In recent decades,
computational technologies such as word processing, digital type-
setting, and the Internet have had a tremendous impact on how
research articles are written, produced, archived, and accessed, yet
had relatively little impact on the structure of articles themselves.
Physical paper has multiple virtues as a format—it is tangible and
archival, with no batteries required. But academic articles are now
often read on a screen [51], using a proprietary format optimized
for print (PDF) that suffers from accessibility concerns [6] and
complicates computational extraction and analysis [31].

In contrast, visions of alternative publishing formats have been
a staple of Human-Computer Interaction since the inception of the
field, from initial hypertext designs [42], to theWorldWideWeb [5],
to interactive documents now published regularly by data-driven
journalists [9]. Despite exciting innovations in augmented reading
aids [14, 22, 23, 50] and experiments with online-first research
venues [59, 66], academic publishing remains resistant to change.

Meanwhile, both corporations [19] and non-profits [2] have in-
dexed large swathes of the literature, often applying vision and NLP
methods for not-always-accurate extraction of paper content and
metadata [57]. These efforts enable large-scale search and sciento-
metric analysis [17]; however, robust and flexible tools for content
extraction and reuse remain out of reach for many researchers.

We seek to bridge present and future publishing through novel
authoring tools. We contribute Living Papers, a framework for
writing enhanced articles that encompass multiple output types:
interactive web pages to enable augmented reading experiences,
accessibility, and self-publishing; static PDFs to align incentives
and participate in existing publishing workflows; and application
programming interfaces (APIs) to enable easy extraction and reuse
of both article content and executable code. In sum, Living Papers is
a “language toolkit” consisting of a standardized document model
and a set of extensible parsers, transforms, and output generators.

https://orcid.org/0000-0002-6175-1655
https://orcid.org/0000-0002-4992-4066
https://orcid.org/0009-0003-3765-119X
https://orcid.org/0009-0007-2850-2140
https://orcid.org/0000-0002-5154-9277
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3586183.3606791
https://doi.org/10.1145/3586183.3606791
https://doi.org/10.1145/3586183.3606791

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Jeffrey Heer, Matthew Conlen, Vishal Devireddy, Tu Nguyen, and Joshua Horowitz

Figure 1: Living Papers version of an IEEE VIS 2021 paper, with PDF (left) and HTML (center) output generated from the same
source document. Web output includes reading aids for citations (top right) and cross-references (bottom right).

To support dynamic reading aids and explorable explanations
[62], Living Papers produces web-based articles with a reactive
runtime and extensible component system. We use Markdown [20]
as a default input format, with syntax extensions for custom com-
ponents. Articles may include executable code in languages such as
JavaScript, R, and Python to generate static or interactive content.
To support “backwards compatibility” with current publishing prac-
tices, the Living Papers compiler automatically converts interactive
and web-based material to static content, and generates LaTeX [36]
projects or compiled PDFs using extensible journal and conference
templates. To assist not only people but also computers to more
easily interpret papers, Living Papers can compile article content
into accessible data structures, APIs, and software modules.

We present our design objectives for Living Papers, honed in con-
versations with publishing tool developers and researchers of both
augmented reading aids and information extraction from academic
articles. We seek to balance tensions among dynamic content, acces-
sible authoring, participation in existing publishing workflows, and
research into novel techniques. We evaluate the system by demon-
stration, sharing articles by ourselves and others that span formal
research papers (including this one!), explorable explanations, and
enhanced content extraction and reuse. These examples highlight
augmentations such as enhanced previews for citations and cross-
referenced material, equations with interactive term definitions,
and articles with dynamic content such as explorable multiverse
analyses [14]. Living Papers is available as open source software,
and intended to support both article authors and researchers ex-
ploring augmented forms of scholarly communication.

2 RELATEDWORK
Living Papers connects prior research on augmented reading, article
authoring tools, and information extraction from academic papers.

2.1 Augmented Reading
Augmented reading interfaces have long been a topic of HCI re-
search. In addition to the development of hypertext [42] and HTML
[5], earlier works include Hill et al. [25]’s EditWear and ReadWear—
a document viewer showing traces of social reading and writing
activity—and Xerox PARC projects including Fluid Documents [67]
and eXperiments in the Future of Reading (XFR) [21].

More recent research focuses specifically on scholarly communi-
cation. A common aim is to provide contextual information about
references, technical terms, and mathematical symbols where they
are used, without having to break one’s flow by jumping to an-
other part of the document. ScholarPhi [22] annotates papers with
definitions of terms and symbols. Other projects study math aug-
mentations to improve the readability of formulas [23], perform
rich linking of text and tables [4, 30], provide context by surfacing
citation text from later papers [50], support skimming via auto-
matic highlights [16], and produce plain language summaries for
broader audiences [3]. Some of these techniques are now available
in the online Semantic Reader application [1]. Dragicevic et al. [14]
prototype “multiverse” analyses of varied data analysis choices by
interacting with the paper itself. Living Papers provides a platform
for the development and deployment of such techniques.

Elsewhere, interactive articles with dynamic figures, annotations,
and embedded simulations have gained prominence, particularly in
data-driven journalism [9]. Distill.pub [59], a journal for explaining
machine learning, and the IEEE VISxAI workshop [66], provide
academic venues for online-first, interactive web content. However,
Distill is now on indefinite hiatus [59], in part due to the editing and
mentoring costs of high-quality interactive articles. Living Papers
seeks to make it easier to write and self-publish such articles, but
also align incentives by simultaneously producing static outputs
for submission to traditional research venues.

Living Papers: A Language Toolkit for Augmented Scholarly Communication UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

2.2 Authoring Tools
Academic articles are typically written using word processors or
digital typesetting tools, notably TeX [34] and LaTeX [36]. TeX’s
mathematical notation has become a de facto standard for writing
formulae, also applicable on the Web via packages such as KaTeX
[15]. Collaborative authoring is supported via web applications,
including Overleaf [47]. Typst [61] is a more recent alternative
to TeX with its own markup language and integrated scripting
language, runnable online via WebAssembly. For formatted text,
Markdown [20] is a popular alternative to both HTML and LaTeX.

Pandoc [39] is a document converterwithmany-to-many (though
sometimes lossy) transformations among formats. Pandoc parses
input documents into an internal abstract syntax tree (AST) repre-
sentation, from which it then produces converted outputs. Living
Papers follows a similar approach, and even uses Pandoc to parse
input Markdown files, but differs by providing built-in reading
augmentations, an integrated reactive runtime, an extensible com-
ponent system, and API outputs for information extraction.

Authoring tools may include executable code to enable interac-
tivity or to support computational generation of content such as
figures, tables, and statistical models. Knuth’s Literate Program-
ming [35] popularized the interleaving of code and narrative within
a single document and has had a strong influence on computational
notebooks and related formats [53]. Computational notebooks in-
cluding Jupyter [33] and Observable [44] structure a document into
“cells” that may contain text (with Markdown syntax) or runnable
code. CurveNote [13] builds on Jupyter notebooks to produce online
articles, while JupyterBook [28] uses a Markdown-based format
(MyST [41]) with references to external notebook content.

RMarkdown [52] and its successor Quarto [49] interleave ex-
ecutable code blocks into Markdown syntax. Code is extracted,
evaluated, and results are stitched back into the document. Code
is typically evaluated at compile time (e.g., running an R script),
though Quarto also supports “live” JavaScript in the browser. Liv-
ing Papers similarly supports interleaved text and code, and can
execute code either at compile time or within an integrated reactive
runtime and component system. Both Living Papers and Quarto
independently chose to incorporate the JavaScript dialect of Ob-
servable notebooks [44] for interactive content. Quarto does not
provide a component library and relies primarily on Pandoc for its
implementation (Living Papers uses Pandoc only for parsing).

Manubot [26] provides a toolchain for scholarly publishing that
takes Markdown files as input, supports automatic resolution of
Digital Object Identifiers (DOIs), and generates static Web and PDF
output using Pandoc and GitHub actions. Living Papers similarly
supports retrieval of bibliographic metadata given DOIs or other
paper identifiers. Nota [12] is a tool for writing web documents with
augmented reading aids and interactive figures implemented within
the React [40] framework. Nota uses a variant of Markdown syntax
extended with constructs for defining terms and inline scripting.

Idyll [9] is a language for interactive articles, including explorable
explanations [62]. Idyll uses Markdown syntax, extended to include
arbitrary components, and produces web applications implemented
using React. Living Papers similarly supports an extensible compo-
nent model, though using W3C-standard custom HTML elements
rather than React. Living Papers uses a modified version of Idyll’s

abstract syntax tree (AST) format, and provides an extended tool
chain to support academic articles, including citation processing,
multiple output formats, and conversion of interactive content to
static output. In addition, Living Papers uses Observable’s reactive
runtime for linked interactive content. In contrast to Idyll, Living
Papers authors can write code directly in their articles and im-
port content from existing Observable notebooks, enabling custom
interactives with much less software engineering. Fidyll [10] pro-
vides a higher-level syntax for Idyll focused squarely on narrative
visualization, and also targets slideshow, video, and PDF output.

Living Papers and the projects above share significant overlaps.
Markdown syntax is prevalent across projects and multiple tools
use identifiers such as DOIs to automatically resolve bibliographic
data. Living Papers differs from the other projects by combining
both support for academic papers (including “built-in” reading
augmentations) and an integrated reactive runtime and component
system. To the best of our knowledge, Living Papers is also unique
in generating APIs for context extraction and reuse.

Meanwhile, other tools for interactive documents use graphical
interfaces rather than textual markup and code. Idyll Studio [11]
provides a WYSIWYG editor for Idyll articles (though not custom
components). Webstrates [32] support collaborative editing to a
shared, network-accessible document model. VisFlow [58] uses text-
chart links to support dynamic layouts for narrative visualization.
Scalar [60] is a web-first tool that provides authoring interfaces and
content reuse, primarily serving the digital humanities community.
Here we focus on the language toolkit provided by Living Papers,
upon which future graphical and collaborative editors might build.

2.3 Information Extraction & Reuse
Other projects focus on analyzing and extracting content from
papers, sometimes available only in PDF form. Augmented read-
ing techniques (§2.1) and literature review tools [27] depend upon
accurate identification or synthesis of term definitions [29], cita-
tion sentences [50], summary text [3], and more. Extraction tools
include GROBID [37] and the infrastructure behind the open Se-
mantic Scholar graph [2]. Extraction tools can “unlock” content to
convert PDF documents to more screen reader accessible HTML
[63] or interpret bitmap images of charts [56]. However, automatic
extraction from PDFs is a difficult, error-prone task [57].

Living Papers instead supports extraction and reuse directly
from published results. In addition to articles intended for people
to read, Living Papers produces outputs for computational use. Liv-
ing Papers generates a structured AST format in JavaScript Object
Notation (JSON) and an application programming interface (API)
that provides convenient access to paper metadata (title, authors,
etc.) and content (section text, figures, captions, references, in situ
citations). Moreover, the interactive content of a Living Papers arti-
cle compiles to a separate, importable JavaScript module, enabling
reuse of computational content in other articles or web pages.

3 DESIGN GOALS & PROCESS
Living Papers seeks to balance sometimes competing goals, such as
supporting both interactive web articles and standard print work-
flows. Through our iterative development we have discussed our

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Jeffrey Heer, Matthew Conlen, Vishal Devireddy, Tu Nguyen, and Joshua Horowitz

goals and progress with multiple stakeholder groups. Over the pe-
riod of a year we spoke with augmented reading and accessibility
researchers from the CHI, UIST, VIS, and ASSETS communities;
information extraction and knowledge base researchers (many as-
sociated with the Semantic Scholar team [2]); and publishing tool
developers, including contributors to Quarto [49], Distill.pub [59],
Nota [12], Jupyter [33], Observable [44], and the New York Times.
We use Living Papers to write our own research articles and ob-
served its use by graduate students in a Fall 2022 course on the
Future of Scholarly Communication. Through this process we ar-
rived at the following design considerations.

Augmented reading experiences.We seek to aid contextual under-
standing of references, formulas, and other content without “bounc-
ing” between paper sections (§2.1). By default, output web articles
include contextual previews for both citations and cross-references.
We also demonstrate extensions for augmented equations, term
definitions, and alternative reading interfaces.

Computationalmedia.We seek to recast scholarly publications
from static articles to computational artifacts more amenable to
both people and machines. Authors should be able to incorporate re-
producible results such as models and data visualizations, which can
then be reused as-is in other media. Living Papers supports interac-
tion via a reactive runtime that integrates executable code blocks
and an extensible component library that includes augmented cita-
tions, cross-references, equations, and interactive text. While tools
like Semantic Scholar rely on accurate information extraction to
provide reading aids, Living Papers side-steps this issue via lan-
guage design and enables downstream extraction by producing
APIs to query paper content and reuse reactive web content.

Approachable writing and content generation.We sought a fa-
miliar yet sufficiently expressive markup language, leading us to
use Markdown as our default input format. We follow Pandoc’s [39]
Markdown syntax, which is familiar to users of RMarkdown [52]
and includes constructs for tables, math blocks, and citations. In
addition, syntax highlighting (e.g., in VSCode) is already supported.
We want to simplify inclusion of computer-generated models and
figures, for example using executable code blocks. In addition, Liv-
ing Papers’ citation processor performs automatic lookup of biblio-
graphic metadata from DOIs and other identifiers (e.g., PubMed and
Semantic Scholar ids) to help ease reference management, while
still supporting standard citation formats such as BibTeX.

Compatible with existing publishing norms.We hypothesize that
the print-focused needs of current publication workflows is a ma-
jor impediment to the adoption of augmented formats. Distill.pub
editors, for instance, emphasized the issue of aligning to existing
incentives. Living Papers supports both interactive web-based con-
tent and traditional print-based media. Authors should be able to
write their content once and generate both augmented web pages
and submission-worthy PDFs. To accommodate these needs, Living
Papers automatically converts interactive material to static text
or images for print output, while also supporting output-specific
blocks when authors wish to specialize content for different media.

Accessible and archivable content and interactions.Accessibility
researchers expressed a strong preference for HTML over PDF, as
HTML output with semantic tags better supports screen readers
than standard PDF output. Living Papers’ default web page template
uses a responsive layout that adjusts for desktop or mobile viewing.

By publishing to the Web, Living Papers is also applicable to more
informal genres such as blog posts. Meanwhile, static output enables
printing to paper for both reading and archival purposes.

Collaborative authoring and review. Much academic work is
collaborative in nature. Living Papers uses plain text formats that
operate well with revision control and diff’ing tools such as Git,
supporting awareness and integration of collaborators’ work. We
also support anchored annotations [48] to a Living Papers AST,
providing infrastructure for collaborative commentary or annota-
tions of terms or named entities of interest. Though beyond the
scope of this paper, we plan to build on these features to support
collaborative authoring and reviewing interfaces in future work.

Extensible platform for research.While Living Papers is intended
to be useful as-is, our collective understanding of the design space
of augmented reading aids and effective use of interactivity is still
developing. For example, augmented reading researchers desired
an extensible research platform for better dissemination and test-
ing of techniques. To support continued research and evaluation,
Living Papers provides an open architecture with flexible parsing,
transforms, and output formats. Living Papers can support explo-
ration of new input markup languages, AST transforms, reading
aids, custom interactive components, output types, and more.

In terms of non-goals, web application frameworks, static site
generators, and narrative visualization tools (e.g., for rich “scrol-
lytelling” [9]) overlap with Living Papers. We do not attempt to
cover this space, but instead focus squarely on academic articles. We
prioritize familiarity and practicality (including use of Markdown,
the Observable runtime, BibTeX, and leaky abstractions over LaTeX)
over formal elegance—“evolution, not revolution.” This focus was
honed by discussions with notebook and publishing tool creators,
and by the accretive history of the Web versus other document
systems, all the way back to Nelson and the “curse of Xanadu” [65].
Living Papers intentionally embraces a “polyglot” syntax.

4 EXAMPLE ARTICLES
Before detailing Living Papers’ technical building blocks, we present
a set of example articles that span—and blur the distinction between—
traditional research papers and explorable explanations. All article
sources and outputs are included as supplemental material. Beyond
the examples presented here, both ourselves and others have used
Living Papers to write research papers for course projects and for
venues such as IEEE VIS, ACM CHI, and UIST—including this paper.

4.1 Fast & Accurate Kernel Density Estimation
Figure 1 shows an IEEE VIS 2021 paper on kernel density estimation
[24]. The original LaTeX manuscript includes text, equations, and
figures created with the Vega visualization grammar [55], which
were manually converted from SVG to PDF format. The Living
Papers version is written in a more approachableMarkdown syntax,
produces compatible, archivable PDF output, and converts source
SVG images to PDF output for inclusion in LaTeX. Living Papers
uses extended Markdown syntax to define a figure component:
::: figure {#id .class property=value}
![alt text](image.svg)
| Caption text
:::

Living Papers: A Language Toolkit for Augmented Scholarly Communication UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 2: Colored terms with nested, interactive definitions (left) aid equation understanding in Lucas & Kanade’s classic optical
flow estimation paper [38]. A “sticky” margin figure (right) stays fixed while scrolling the current section, maintaining context.

References in BibTeX format can be included in-document, in a
separate file, or retrieved using an inline identifier (e.g., using DOIs,
@doi:10.1109/VIS49827.2021.9623323). Living Papers’ more ac-
cessible html output includes augmented reading aids that provide
previews for citations and cross-references (Figure 1, right).

Living Papers also helps manage figure layout across media
types. The Web-based version includes margin figures (indicated
by a .margin class on figure components), which, for the latex
output, are instead placed within a two-column layout. LaTeX is
notoriously finicky with figure layout: to ensure desired placement,
authors may need to move figure source definitions far from the
content they reference. Living Papers provides a \place{id} di-
rective that indicates where to place a referenced figure or table
within the output latex source. This allows html output to place
the figure where it is defined in the original Living Papers source,
while repositioning the figure as desired within generated LaTeX.
To adjust layout and prevent undesirable gaps or overflows, the
latex output module also accepts a vspace option that system-
atically inserts vertical offset instructions for figures, captions, or
other named node types. We have found these extensions valuable
for expediting article production, including for this current paper.

4.2 An Iterative Image Registration Technique
Figure 2 recreates Lucas & Kanade’s paper on optical flow estima-
tion [38]. The Living Papers version provides math augmentations
[23] to help readers make sense of the paper’s formulas, demonstrat-
ing Living Papers’ extensibility. Equations include colored terms;
in-situ definitions are revealed on mouse click. A custom AST trans-
form first parses definitions components in the document source:

~~~ definitions
@F :blue: First stereo image
@x :red: Position vector in an image
~~~

Mathematical notation can reference defined terms within $-
delimited inline math (e.g., $@F(@x)$) and equation components
(~~~ equation). Augmented formulas are then rendered usingWeb
components that inject color annotations into KaTeX [15] source

Figure 3: Interactive text enables explorable multiverse anal-
ysis of data analysis choices [14]. Dragging or clicking the
text cycles through statistical procedures and resulting plots.

and bind event listeners to the rendered terms. Compatible latex
output shows normal, unaugmented math.

The article includes augmented “sticky” figures that persist to
maintain context while reading. For html output, adding the at-
tribute sticky-until="#sec4_2" to a figure component causes
that figure to stay on-screen until the section with id sec4_2 is
reached. The latex output ignores these web-specific annotations.

4.3 Explorable Multiverse Analysis
Living Papers articles can include interactive computational content.
Here we recreate Dragicevic et al. [14]’s explorable multiverse
analyses for assessing the sensitivity of different statistical analysis
decisions. Readers can explore a range of data analysis choices by
interacting with built-in components for draggable and toggleable
text (Figure 3). For example, the following inline component syntax
adds draggable text for a choice of confidence interval levels:
[:option-text:]{

options=[50,68,80,90,95,99,99.9]
suffix="%"
bind=confidenceLevel

}

The reactive runtime binds the component value to the runtime’s
confidenceLevel variable, causing all dependent components to

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Jeffrey Heer, Matthew Conlen, Vishal Devireddy, Tu Nguyen, and Joshua Horowitz

Figure 4: An explorable explanation of the Barnes-Hut approximation for N-body forces. Linked text and chart elements update
the Θ variable in the Living Papers reactive runtime, driving highlighting and simulation parameters.

update. The inline JavaScript code `js confidenceLevel`, for
example, dynamically displays the current value as output text.
Other bound components similarly update via two-way bindings.

The article uses pre-computed images for all confidence level and
analysis procedure combinations (e.g., bootstrapped vs. parametric
intervals). The image syntax ![alt text](`figA`) binds code
output—here, the variable figA—to the image source URL. Alterna-
tively, result images could be generated during article compilation
by using the knitr transform to evaluate R code blocks (§7.2).

This article also compiles to compatible LaTeX. An output-specific
AST transform (§7.3) evaluates the reactive runtime in a headless
web browser, generates static content, and rewrites the article AST
by replacing all dynamic elements. The resulting PDF is a coherent
article describing just the default set of analysis choices.

4.4 The Barnes-Hut Approximation
Figure 4 shows an explorable explanation of the Barnes-Hut ap-
proximation for N-body forces, originally written using Idyll [9],
which demonstrates augmented reading, computational media, and
extensibility. A custom simulation component—showcasing force-
directed layout and interactive visualizations of quadtree structures
and force calculations—is included as a margin figure that persists
throughout the article. The simulation and linked plots update in re-
sponse to interactions with the article, including input from action
links (e.g., [Θ = 0.5](`theta=0.5`)) and bound sliders (created
with the Observable standard library’s Inputs.range method):

~~~ js {bind=theta}
Inputs.range([0, 2], { step: 0.1, label: 'Theta' })
~~~

Similar to the Idyll version, the force simulation and Vega-based
plots are implemented as custom components. Converting the origi-
nal React components toW3C customHTML elements was straight-
forward, involving changes only to “wrapper” code. However, the
Idyll version also involves custom components for sliders and action
links (implemented in separate JavaScript files) and integration logic

Figure 5: A zoomable paper reading interface created by post-
processing Living Papers html output.

that requires knowledge of Idyll internals. Living Papers supports
these features, including reuse of common Observable components,
directly within the primary article source.

The article compiles to LaTeX, but, if done naïvely, can produce
an illegible article due to the lack of interaction. Using output-
specific blocks, Living Papers authors can designate content that
should be included only for target output types. Here, we can an-
notate the persistent interactive simulation as html:only. We can
then use latex:only blocks to include compatible simulation snap-
shots with desired keyframe parameters in the static output.

4.5 Zoomable Paper Reader
Figure 5 shows an augmented reading interface created by a student,
demonstrating extensible output. JavaScript code post-processes

Living Papers: A Language Toolkit for Augmented Scholarly Communication UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 6: Overview of Living Papers compilation. Input files (e.g., using extended Markdown syntax) are parsed to produce an
Abstract Syntax Tree (AST) that is further updated by AST transforms for citations, executable code, and more. Modules for web,
latex, and api output apply output-specific AST transforms and then generate output files.

Figure 7: Pipeline to parse a Markdown file (§6), perform AST transforms (§7), and generate HTML, LaTeX, and API outputs (§8).

Living Papers html output into a zoomable, column-oriented layout.
The initial view provides an overview of the full paper. A reader can
freely pan and zoom the canvas. For a linear reading experience,
the reader can click a region of the article (Fig. 5 top-left) and zoom
in to a tracked, scrollable navigation mode (Fig. 5 bottom-center).
When the reader reaches the end of a column, they can continue
scrolling to trigger automatic panning along a “track” to the top of
the next column. The content in each column is standard Living
Papers output, with the same reading aids and reactive content
options previously discussed. We are now refactoring this layout
and navigation code into a reusable html output template.

5 LIVING PAPERS ARCHITECTURE
Living Papers uses the compilation pipeline illustrated in Figures 6
& 7. Input files are parsed into an abstract syntax tree (AST). AST
transforms then analyze and update the AST, including citation
processing and analysis of executable code, to form a canonical AST
that represents the article in standalone fashion. One or more out-
put modules take the canonical AST as input, apply output-specific
transforms, and then generate output files. Living Papers is imple-
mented in JavaScript and provides a command line utility (lpub) for
article compilation. Here we describe the core abstractions of the
document model, reactive runtime, and extensibility mechanisms.
Later sections further detail the compilation steps of parsing (§6),
AST transformation (§7), and output generation (§8).

5.1 Document Model
Living Papers uses an AST format adapted from Idyll [9], analagous
to the Document Object Model (DOM) used by web browsers. An
AST is representable in JSON format, facilitating both processing
and serialization. At the top-level, an AST consists of three proper-
ties: metadata, data, and the article tree. Article metadata includes
information such as title, authors, and keywords, as well as pro-
cessing options for outputs, transforms, and components. Article

data, such as resolved citations or term definitions, can be accessed
by downstream components and generated APIs. Extensions can
add their own data properties as needed. Living Papers includes a
stand-alone library for AST creation, modification, and traversal.

The document tree is rooted at the AST article property. A docu-
ment nodemay contain a type, name, properties, and either a value or
children. Currently, we only use the types textnode and component.
A text node contains verbatim text as a string value. Component
nodes include a name (e.g., p for paragraph or em for emphasis)
and may include children as an array of child AST nodes. Figure 6
(middle) illustrates this AST structure. All Living Papers start with
a root node with the component name article.

Node properties consist of key-value pairs where the values take
one of three types. Value-typed properties simply contain a static
value. Expression-typed properties contain a reactive JavaScript
expression, which can be used to dynamically set component prop-
erties. Event-typed properties contain JavaScript event handler code.
Unlike expression properties, event handlers can update variable
assignments in the reactive runtime (§5.2). The special class prop-
erty may contain one or more named classes used to style content.
Living Papers includes a standard set of classes for layout and sizing
shared by html and latex output.

Our design prioritizes Web output, while maintaining flexibility
for other outputs. Basic AST component nodes adhere to matching
HTML elements. Living Papers’ p, link, and image nodes map to p,
a, and img HTML tags, with properties that align to corresponding
HTML attributes. Similarly, formatting (em, strong, blockquote,
. . .) and list (ul, ol, li) nodes mirror their HTML equivalents.

Other nodes are specific to Living Papers. The cite-list and
cite-ref nodes represent citations. A cross-ref node represents
a reference to a section, figure, table, or equation elsewhere
in the article. The code and codeblock components represent
source code, often with syntax highlighting. Meanwhile, math and
equation nodes represent expressions in TeX math notation.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Jeffrey Heer, Matthew Conlen, Vishal Devireddy, Tu Nguyen, and Joshua Horowitz

Component nodes for executable code, math formulas, or other
specialized syntax may include content in a code property or child
text node. For example, a math node with the formula for the
golden ratio 𝜙 could contain a single child text node with the string
\phi=\frac{1+\sqrt{5}}{2}. Downstream transforms or output
modules then process this content as needed. With html output,
each of these is ultimately displayed using a custom HTML element.

5.2 Reactive Runtime
To support interaction, Living Papers includes a reactive runtime in
which changes to variables or code outputs automatically propagate
to dependent elements. Though the runtime is browser-based, it is
tied to features of Living Papers’ core document model, including
expression- and event-typed properties.

Unlike Idyll, which uses its own basic reactive variable store
within a React [40] context, Living Papers uses the same reactive
runtime as Observable notebooks [46]. In addition to providing
a robust and performant reactive engine, we chose this approach
to leverage Observable’s standard library (with built-in access to
libraries including D3 [7] and Vega-Lite [54]) and import content
from existing Observable notebooks. Authors can create content
such as dynamic figures within an external notebook and then reuse
that work, importing it directly in a Living Papers article.

After initial parsing, an AST transform identifies executable code
blocks using Observable’s JavaScript dialect and converts them to
cell-view component nodes. Multiple named cells (reactive units)
can be defined within one code block by using a single-line ---
delimiter. Only the last cell in a block is mapped to visible output.

Other components can also participate. Expression-valued prop-
erties map to reactive variables in the runtime, updating their cor-
responding components upon change. Event-valued properties are
evaluated upon component input events (such as click), and can
assign new values to named reactive variables, triggering article
updates. Both custom components and JavaScript-defined elements
(e.g., Observable Inputs [45]) can serve as input widgets, so long
as the resulting Web element exposes a gettable and settable value
property. Living Papers AST nodes also support a bind property
that instructs the runtime to instantiate a two-way binding between
a named reactive variable and the input component value.

Depending on the input format, Living Papers provides syntactic
sugar for runtime integration. In Living Papers Markdown, the
span $$x^2 = ${v}^2 = ${v*v}$$ specifies a dynamic equation:
JavaScript string interpolation is performed for the templated code
${v} and ${v*v}, the resulting TeX formula is then typeset. We
use a double $$ delimiter here to enable these internal template
variables. Instead of a normal hyperlink, the link syntax [click
me](`v+=1`) specifies an action link with an event-typed onclick
property invoked upon click. Similarly, the image syntax ![alt
text](`image_src`) creates an expression-valued src property
that dynamically sets the source URL to the image_src variable.

5.3 Extensibility
The Living Papers compiler marshals a number of extensible mod-
ules. Articles may specify AST transforms to apply. Web output
may include components implemented as custom HTML elements.
Both html and latex output are generated using templates.

::: figure {#overview .page position="t"}
![alt text](image.png)
| Figure caption text.
:::

~~~ equation {#kde}
f(x) = \frac{1}{n\sigma} \sum_{i=1}^{n}

K{\Big (}\frac{x - x_i}{\sigma}{\Big )}
~~~

[:range-text:]{min=1 max=10 bind=var}

Figure 8: Living Papers Markdown syntax for block and in-
line component elements. Fenced blocks (:::) contain Mark-
down content to be parsed. Verbatim blocks (~~~) pass child
content as-is. Inline elements may include parsed child con-
tent in the span after the :component-name:.

The compiler maintains a context object across parsing, trans-
forms, and output generation to provide access to needed resources
and services. The context provides access to the source file paths,
directories, and external options (to complement or override op-
tions provided as article metadata) as well as caching, logging, and
a resolution method for extension lookup.

Living Papers supports third-party extensions using a resolu-
tion scheme to lookup external transforms, components, templates,
parsers, or output modules. If an extension is specified as a file path,
it is looked up directly, typically within the same article project.
Otherwise, the extension specification is treated as an npm (Node
Package Manager) package name and looked up using Node.js’
built-in resolution algorithm. Third-party packages can include a
special living-papers entry in their package.json file, provid-
ing a manifest for any extensions (transforms, components, etc.)
provided; these are then added to the compiler’s internal registry.

6 INPUT PARSING
Parsing is the first phase of article compilation. The Living Papers
architecture supports arbitrary parsers dispatched by file extension
or a specified input type, including the “non-parser” of reading in
an existing canonical AST JSON file. That said, our current imple-
mentation focuses on an extended Markdown format.

Given its familiarity and support for citations, references, tables,
and more, we use Pandoc’s Markdown variant. The parser module
calls the Pandoc binary to parse inputs and produce a Pandoc AST
in JSON format, then transforms the Pandoc AST to a Living Papers
AST. Prior to invoking Pandoc, a pre-processor is used to handle
our customized component syntax, including block and inline com-
ponents (Figure 8), and to properly escape backtick-quoted code in
component attributes, action links, and images. The pre-processor
emits Pandoc-compatible Markdown.1

The parser performs additional interpretation tasks when map-
ping the Pandoc AST to a Living Papers AST. Notably, it classifies
different references by type. While @Knuth:84 cites a reference by
id (e.g., in BibTeX), @doi:10.1093/comjnl/27.2.97 instead cites

1We adopted Pandoc to expedite development. However, the parser does not track
input token positions, which are valuable for linking input and output. Pandoc and
the pre-processor may later be replaced by a JavaScript implementation. That said,
parsing Pandoc ASTs provides an avenue for conversion from other formats (see §9).

Living Papers: A Language Toolkit for Augmented Scholarly Communication UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

the work by its DOI. Meanwhile, references such as @fig:overview
or @eqn:kde are cross-references to article content. The parser dis-
tinguishes among these based on the prefix.

Though the Markdown parser is not internally extensible at
present, Living Papers can also accept entirely new parsers. In any
case, novel components are supported via AST transforms. For
example, a transform can extract and process code blocks with
custom component names (e.g., the math term definitions in §4.2).
As such transforms of verbatim content are applied downstream
of the initial parse, they can be reused with any future parsers as
long as those parsers produce compatible ASTs.

7 AST TRANSFORMS
After an initial parse, the compiler applies AST transforms to map
the parser output to a canonical AST representation of the article.
Different output modules may also apply subsequent AST trans-
forms. An AST transform is created by calling a constructor method
that passes in options, resulting in a function that takes an AST
and context (§5.3) as input and returns a modified AST as output.

7.1 Post-Parse Transforms
The first transform applied after parsing handles inclusion of ad-
ditional content. Depending on the specified options, additional
source files are loaded, either parsed or left verbatim, and then
added to the AST. As in many other document processors, this
allows article content to be spread over multiple files.

The next transform performs runtime code extraction, identifying
executable code (e.g., `js value.toFixed(2)`) and mapping it
to cell-view components for inclusion in the reactive runtime.
Subsequent parsing and generation of runtime code occurs later
during html output generation (§8.1).

The citations transform provides citation processing. Any exter-
nal bibliography (BibTeX) files referenced in the article metadata
are first loaded and parsed. Next, the transform finds bibliography
component nodes in the AST and parses their verbatim content.
Bibliographic data is parsed using the citation.js library [64], with
CSL-JSON [8] as our canonical format. The transform then tra-
verses the AST to visit all cite-ref nodes. If a citation refers to a
work by an internal id, the transform attempts to look up that id
among the parsed entries. If the citation instead uses an external id
such as a DOI, the transform attempts to retrieve a CSL-JSON entry
from the Web. For DOI lookup we use the REST API of doi.org.
Given a resolved external id, the transform also queries the Seman-
tic Scholar API [2] for additional information, including abstracts
and summary (“tldr”) snippets. Network request results are cached
across iterative compilations for improved performance.

The citations transform produces multiple results. Bibliographic
entries for all cited works are included in a formatted bibliogra-
phy at the end of the article. All cite-ref nodes are updated to
include an integer index into the sorted bibliography and a resolved
id.2 To support in-context reading aids and information extrac-
tion, bibliographic data (CSL-JSON, BibTeX, and Semantic Scholar
data) are added to the article AST’s top-level data property under
the citations key. Citation lookup failures are also recognized,
resulting in informative error messages.
2If a DOI and internal id refer to the same article, they are resolved to a single id.

Figure 9: The knitr transform evaluates R code blocks at
compile time and rewrites the AST. Fitted parameters bind
to the runtime for inclusion in formula text.

Figure 10: Using the pyodide transform: a dynamic Python
Matplotlib chart is parameterized by a JavaScript slider.

7.2 Opt-In Transforms
Opt-in AST transforms specified in an article’s metadata run after
the standard transforms. Either custom third-party transforms or
the following built-in transforms may be invoked.

The knitr transform extracts executable code written in the R
programming language, synthesizes and evaluates an R script, and
weaves the results back into the Living Papers AST. The transform
writes extracted R code to blocks in an external Markdown file,
invokes the knitr program (also used by RMarkdown and Quarto)
to evaluate the code, and parses the resulting output Markdown
to extract generated content. Adding a bind property to an R code
block causes JSON-serialized output to be bound to a named variable
in the reactive runtime. As in Figure 9, one can fit a statistical model
in R and pass the fitted parameters and other data for processing by
JavaScript. In the future, we hope to provide analagous functionality
for compile-time evaluation of Python code blocks.

The pyodide transform extracts Python code to run directly
within the reactive runtime. We use Pyodide, a WebAssembly port
of Python and libraries including Pandas, Matplotlib, and Scikit-
Learn. Pyodide evaluates Python code in the browser, including
an object model with direct JavaScript bindings. The transform
leverages Pyodide to create Python cells that run just like standard
Observable JavaScript cells. Figure 10 shows a Python Matplotlib
figure interactively driven by an Observable Inputs slider. However,
Pyodide and associated libraries take a few seconds to initialize,
delaying page loading time. Languages such as R might be similarly
integrated if they are compiled to WebAssembly.

7.3 Output-Specific Transforms
Ouput modules apply transforms to prepare an AST for a specific
output type. For example, html output applies multiple transforms
to aid layout, section numbering, and other aspects (§8.1). Here

https://doi.org

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Jeffrey Heer, Matthew Conlen, Vishal Devireddy, Tu Nguyen, and Joshua Horowitz

we focus on a particularly important transform shared by multiple
output types: conversion of interactive and web-specific content to
static assets such as text and images.

The convert transform first analyzes an input AST to form a
conversion plan, consisting of nodes and properties that need to be
converted to produce static output. For example, SVG images are
supported in the browser but not by LaTeX; we want to convert
those to PDF format prior to latex output generation. Other con-
tent is generated or parameterized by the reactive runtime (e.g.,
expression-typed properties). We must instantiate a runtime, evalu-
ate the content, then extract and convert it.

To perform conversion we use Puppeteer [18], an instrumented,
headless browser commonly used for automated web page test-
ing. In order to associate AST nodes with resulting HTML DOM
elements, the transform first annotates the AST nodes we wish to
convert with a unique id attribute. This attribute passes through the
html output module to the resulting web page, enabling dynamic
lookup via CSS selectors. The transform then loads the compiled
article in Puppeteer, extracts the rendered content, and rewrites the
corresponding AST nodes. For expression-typed AST node proper-
ties and text content, generated values are simply transferred as-is.
For all other content, the transform takes an image screenshot in
either PNG, JPG, or PDF format.

Puppeteer provides a convenient API for extracting bitmap im-
ages of an identified DOM element. However, for PDF output, only
full page printing is supported. To work around this limitation,
the transform dynamically injects a new stylesheet into the Pup-
peteer page that hides all content but the desired target element.
It also applies absolute positioning to override any local layout
directives. The transform then retrieves the element’s bounding
box and “prints” a PDF page whose dimensions exactly match that
of the target element. The result is a vector graphics PDF that can
be directly included in latex output.

8 OUTPUT GENERATION
Given a canonical AST, Living Papers invokes output generation
modules to produce both human- and machine-readable articles.

8.1 Web Output
To generate interactive web pages, the html output module first
applies a sequence of output-specific AST transforms. These trans-
forms prepare syntax-highlighted code listings; handle sections
designated by the abstract, acknowledgements, and appendix
component nodes; generate a header section with article title and
authors; insert section and figure numbers; resolve cross-references;
and process nodes with a sticky-until attribute, which causes
content to persist on screen until an indicated section is reached.

Given a web-specific AST, the module first compiles code for the
reactive runtime. Code from all cell-view nodes and expression-
and event-typed properties is compiled to standard JavaScript func-
tions for inclusion in the Living Papers runtime. While cell-view
components and expression properties map to standard reactive
variables, event handlers must be dealt with separately. As the Ob-
servable runtime does not allow a cell to be redefined internally,
event handlers must modify the runtime by re-defining variables
externally. The code generator inserts a proxy object to collect all

Figure 11: A web-based article viewed at a mobile form factor.
The default theme provides a responsive layout.

variable assignments made by a handler; these assignments are
then applied to the runtime in batch when the handler completes.

Next, the module marshals all components that map to custom
HTML elements. Living Papers includes components for citations
(cite-ref), cross-references (cross-ref), reactive runtime out-
put (cell-view), syntax-highlighted code (code-block), and math
blocks (math, equation). KaTeX [15] is used to process and typeset
TeX notation in the browser. To aid reading, citation and cross-
reference components provide tooltips with contextual information:
title, authors, venue, and summary for citations, and a live content
snapshot and caption for cross-references. The component library
includes other interactive elements; for example range-text to
select from a range of values by dragging and toggle-text to cy-
cle through values upon click or touch. These input components
can be bound to reactive variables (§5.2) to drive dynamic content.
External custom components are also supported (§5.3).

The html output module then generates entry code to register
any custom components used, instantiate the runtime, load gen-
erated runtime code, and assign the top-level AST data property
to the root article element for subsequent lookup. All generated
code and component definitions are run through a bundler that
packages and optionally minifies the code for use. If an article does
not contain interactive content or custom components, this process
is skipped and no output JavaScript is generated.

Finally, the module generates output HTML and CSS by walking
the AST and mapping nodes to corresponding HTML elements or
text nodes. Output-specific nodes or properties (e.g., those flagged
for latex output) are ignored. To generate CSS, both base CSS
definitions shared by all articles and the CSS for a named theme are
loaded. Alternative themes can be used via Living Papers’ exten-
sion mechanisms. The default layout uses multiple columns with a
main column for primary content and a right margin column for
footnotes and marginalia (tagged with the .margin class). Media
queries collapse all content to a single-column layout for accessible

Living Papers: A Language Toolkit for Augmented Scholarly Communication UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

mobile reading. An article’s metadata may include a styles prop-
erty, indicating a custom CSS file to also include. The collected CSS
files are then bundled and optionally minified. Depending on the
article metadata settings, the resulting HTML, CSS, and JavaScript
are either written as separate files to an output directory, or as a
selfContained HTML file that includes CSS and JavaScript inline.

Living Papers also provides a static output module, which gen-
erates HTML without any interactive elements. Interactive content
is first converted to static assets by an output-specific transform
(§7.3), after which the same generation process above is performed.
This option can be used to generate static, no-motion content for
both accessibility and archival purposes.

8.2 Print Output
Print output is generated by the latex output module. The module
can produce a full LaTeX project, consisting of a directory with
generated source files and assets. By default, the module generates
a LaTeX project in a temporary directory and invokes the external
pdflatex command to produce a PDF.

The convert transform first maps interactive or Web content to
LaTeX-compatible assets, as described in §7.3. The output module
then walks the AST to generate output LaTeX content. Standard
text is processed to map to LaTeX special characters and escape
sequences as needed, while nodes containing “raw” TeX content
are written verbatim. The module segments generated content into
named variables (e.g., preamble, abstract, body, acknowledgements,
appendix) and passes these to a selected template. Living Papers
provides an extensible set of LaTeX templates for various publishing
venues, including built-in templates for ACM and IEEE journals
and conferences. Living Papers includes additional directives to aid
TeX-specific layout concerns, described earlier in §4.1.

8.3 Computational Output
Living Papers also supports outputs intended for computational
consumption. The ast output module simply writes the canonical
AST in JSON format. The AST can then be loaded and analyzed to
extract article content, data, and metadata.

The api output module generates an API for more convenient
access. We envision these modules being used for information ex-
traction (e.g., for construction of academic knowledge bases) and
to enable new applications (e.g., content for research lab websites,
course syllabi, or curated libraries). The generated API includes
methods for accessing metadata (title, authors, etc.), querying arti-
cle content (abstract, section text, captions, citations), and exporting
figure content (including generated images). The generated API can
be easily imported as a standard ECMAScript module, including
directly from a URL. The api output module first runs an output-
specific transform to generate static PNG images for all figures,
tables, and equations. Next it annotates the AST with these im-
ages in the form of base64-encoded data URLs. It then generates
a JavaScript module that loads the AST and provides methods to
query and access the content.

Like computational notebooks, Living Papers articles can contain
executable code (e.g., models and dynamic figures) that people may
wish to reuse in other articles or web pages. The runtime output
module generates a standalone JavaScript module that contains

the compiled runtime code of an article and is compatible with
Observable notebooks. With this functionality, a Living Papers
article can directly import (or transclude [43]) the computational
content of other papers. Examples of runtime transclusion and the
extraction API are included as supplemental material.

9 DISCUSSION & FUTUREWORK
We presented Living Papers, a framework to bridge academic pub-
lishing of printed papers, interactive web pages, and machine-
readable APIs and assets. Living Papers provides an extensible
infrastructure for parsing, transformation, and generation of schol-
arly articles, coupledwith a reactive runtime and component system
supporting augmented reading aids and interactive texts. To the
best of our knowledge, Living Papers is unique in its combination
of reading augmentations, language-level interaction support, asset
conversion, and output API generation for academic articles.

While we have not conducted a formal summative evaluation of
Living Papers, our development process has been informed through
consultation and collaboration with multiple stakeholders, span-
ning academic researchers and publishing tool developers. Over the
past six months we have used Living Papers to write five submitted
research articles in our own lab, and have observed student use in
a graduate scholarly communication course. While we don’t expect
all users to react as positively, one external paper collaborator told
us unprompted that “Living Papers is a bliss.” We have particularly
appreciated the directness of Markdown syntax, the ease of gener-
ating Web output with reading aids “baked in,” and the ability to
directly incorporate code to generate content such as models, fig-
ures, and tables. As showcased by our examples (§4), we have been
able to readily incorporate varied levels of interactivity, ranging
from standalone interactive graphics to richly linked explorable ex-
planations. Going forward we hope to more deeply evaluate Living
Papers and systematically study authoring experiences.

While rich interactivity can be attention-grabbing, finding an
appropriate balance—in terms of both author effort and reader
benefits—remains an open research question. Beyond citations,
cross-references, and term definitions, what should be in the “stan-
dard library” of reading augmentations that authors can apply with
little-to-no effort? And under what conditions do richer, explorable
explanations significantly improve reader comprehension?We hope
Living Papers will be used by ourselves and others to further de-
velop and study the space of reading augmentations.

With respect to accessibility, we see Living Papers as a promis-
ing work in progress. The current offering includes HTML output
with semantic tags, alt-text images, responsive design to common
viewing form factors, and the ability to convert computational out-
put to static content (including static HTML, not just PDF). The
latter may be helpful for people with motion sensitivity. Gener-
ated paper APIs could enable additional accessibility aids. That
said, our design goals (§3) can be in tension, particularly balancing
accessibility with rich interactive output. There is no guarantee
that authors’ interactive content will be accessible. For example,
generating more accessible and screen-reader navigable visualiza-
tions is an active area of research [68]. We see deeper engagement
with accessibility stakeholders, the curation of accessible “standard
library” components, and subsequent studies as vital future work.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Jeffrey Heer, Matthew Conlen, Vishal Devireddy, Tu Nguyen, and Joshua Horowitz

Another area for future work is graphical and collaborative envi-
ronments for article writing and reviewing. WYSIWYG editors (c.f.,
[11, 32]) provide an alternative to markup languages, and might
operate directly on Living Papers AST structures. Interfaces for an-
notation and commenting would aid both collaborative writing and
paper reviewing. Living Papers already includes infrastructure for
selecting and excerpting AST segments that future interfaces might
build upon. Another next step is to support multi-chapter books or
multi-page websites in addition to single articles. We are interested
in using Living Papers for end-to-end management of a workshop
or conference, including study of peer (or post-publication) review
and the generation of online proceedings.

Meanwhile, we seek to leverage the computational output of Liv-
ing Papers. We envision laboratory web sites, curated reading lists,
or novel literature search tools populated with content extracted
from Living Papers APIs. However, this vision rests on either the
network effects of wide-spread adoption or the ability to more
effectively parse existing content to a shared machine-readable
representation. We believe Living Papers can contribute to conver-
sations about what such a shared document model can and should
include, particularly with respect to interactive content.

One avenue may be to convert existing documents to the Living
Papers format. Though parsing PDFs is difficult, existing tools that
target HTML output (such as SciA11y [63]) might also target Living
Papers. Meanwhile, other structured document formats can (some-
times lossily) be transformed. As Living Papers can parse Pandoc
ASTs, with additional engineering we might leverage Pandoc to
convert from LaTeX, MS Word, and other formats.

One potential concern is the large “syntactic surface” of Living
Papers. To make full use of the system, paper authors must learn
Living Papers Markdown, Observable JavaScript (for interactive
content), BibTeX (for references), bits of TeX/LaTeX (for math equa-
tions, or when custom output-specific directives are needed), and so
on. Developers of new transforms and components require further
knowledge, such as standard JavaScript, HTML, and CSS. These
complications are a direct consequence of Living Papers’ evolution-
ary approach and its embrace of theWeb and “literate programming”
design patterns. While arguably complex, both “interleaved” syntax
and these constituent languages are already in widespread use. We
hope to build on this familiarity and infrastructure, while making
many aspects “opt-in” rather than required.

Still, adoption is difficult and hard to predict. Even if Living
Papers falls short of a widely-used framework, it can be deployed
for real-world publications and websites, and also help influence
the trajectory and feature set of other tools. For individual users,
Living Papers provides natural escape hatches: one can produce
a LaTeX project or interactive web page and, if desired, jettison
Living Papers and move forward with the generated outputs.

More broadly, Living Papers can serve as a non-proprietary and
extensible research system for experimentation—but one that also
connects with existing publishing workflows, hopefully better align-
ing with author incentives. It offers a path for developers of novel
reading or authoring techniques to integrate into an existing sys-
tem for wider deployment in the wild. Living Papers is available as
open source software at github.com/uwdata/living-papers.

REFERENCES
[1] Allen Institute for Artificial Intelligence, Semantic Scholar Team. 2023. Semantic

Reader. https://www.semanticscholar.org/product/semantic-reader.
[2] Waleed Ammar, Dirk Groeneveld, Chandra Bhagavatula, Iz Beltagy, Miles Craw-

ford, Doug Downey, Jason Dunkelberger, Ahmed Elgohary, Sergey Feldman, Vu
Ha, Rodney Kinney, Sebastian Kohlmeier, Kyle Lo, Tyler Murray, Hsu-Han Ooi,
Matthew Peters, Joanna Power, Sam Skjonsberg, Lucy Wang, Chris Willhelm,
Zheng Yuan, Madeleine Zuylen, and oren. 2018. Construction of the Literature
Graph in Semantic Scholar. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 3 (Industry Papers). Association for Computational
Linguistics. https://doi.org/10.18653/v1/n18-3011

[3] Tal August, Lucy Lu Wang, Jonathan Bragg, Marti A. Hearst, Andrew Head,
and Kyle Lo. 2022. Paper Plain: Making Medical Research Papers Approachable
to Healthcare Consumers with Natural Language Processing. (2022). https:
//doi.org/10.48550/ARXIV.2203.00130

[4] Sriram Karthik Badam, Zhicheng Liu, and Niklas Elmqvist. 2019. Elastic Docu-
ments: Coupling Text and Tables through Contextual Visualizations for Enhanced
Document Reading. IEEE Transactions on Visualization and Computer Graphics
25, 1 (2019), 661–671. https://doi.org/10.1109/tvcg.2018.2865119

[5] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and
Arthur Secret. 1994. The World-Wide Web. Commun. ACM 37, 8 (1994), 76–82.
https://doi.org/10.1145/179606.179671

[6] Jeffrey P. Bigham, Erin L. Brady, Cole Gleason, Anhong Guo, and David A.
Shamma. 2016. An Uninteresting Tour ThroughWhy Our Research Papers Aren’t
Accessible. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. ACM. https://doi.org/10.1145/2851581.2892588

[7] M. Bostock, V. Ogievetsky, and J. Heer. 2011. D3 Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics 17, 12 (2011), 2301–2309.
https://doi.org/10.1109/tvcg.2011.185

[8] Citation Style Language. 2023. https://citationstyles.org/.
[9] Matthew Conlen and Jeffrey Heer. 2018. Idyll. In Proceedings of the 31st Annual

ACM Symposium on User Interface Software and Technology. ACM. https://doi.
org/10.1145/3242587.3242600

[10] Matthew Conlen and Jeffrey Heer. 2022. Fidyll: A Compiler for Cross-Format
Data Stories & Explorable Explanations. (2022). https://doi.org/10.48550/ARXIV.
2205.09858

[11] Matthew Conlen, Megan Vo, Alan Tan, and Jeffrey Heer. 2021. Idyll Studio:
A Structured Editor for Authoring Interactive & Data-Driven Articles. In The
34th Annual ACM Symposium on User Interface Software and Technology. ACM.
https://doi.org/10.1145/3472749.3474731

[12] Will Crichton. 2023. A New Medium for Communicating Research on Program-
ming Languages. https://willcrichton.net/nota/.

[13] Curvenote. 2023. https://curvenote.com/.
[14] Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma, Matthew Kay, and Fanny

Chevalier. 2019. Increasing the Transparency of Research Papers with Explorable
Multiverse Analyses. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. ACM. https://doi.org/10.1145/3290605.3300295

[15] Emily Eisenberg and Sophie Alpert. 2023. KaTeX: The fastest math typesetting
library for the web. https://katex.org.

[16] Raymond Fok, Hita Kambhamettu, Luca Soldaini, Jonathan Bragg, Kyle Lo, An-
drew Head, Marti A. Hearst, and Daniel S. Weld. 2022. Scim: Intelligent Skimming
Support for Scientific Papers. (2022). https://doi.org/10.48550/ARXIV.2205.04561

[17] Santo Fortunato, Carl T. Bergstrom, Katy Börner, James A. Evans, Dirk Helbing,
Staša Milojević, Alexander M. Petersen, Filippo Radicchi, Roberta Sinatra, Brian
Uzzi, Alessandro Vespignani, Ludo Waltman, Dashun Wang, and Albert-László
Barabási. 2018. Science of science. Science 359, 6379 (2018). https://doi.org/10.
1126/science.aao0185

[18] Google, Inc. 2023. Puppeteer. https://pptr.dev/.
[19] Google Scholar. 2023. https://scholar.google.com/.
[20] John Gruber. 2004. Markdown. https://daringfireball.net/projects/markdown/.
[21] Steve Harrison, Scott Minneman, Maribeth Back, Anne Balsamo, Mark Chow,

Rich Gold, Matt Gorbet, and Dale Mac Donald. 2001. Design: the what of XFR.
Interactions 8, 3 (2001), 21–30. https://doi.org/10.1145/369825.369829

[22] Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg, Daniel S.
Weld, and Marti A. Hearst. 2021. Augmenting Scientific Papers with Just-in-
Time, Position-Sensitive Definitions of Terms and Symbols. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. ACM. https:
//doi.org/10.1145/3411764.3445648

[23] Andrew Head, Amber Xie, and Marti A. Hearst. 2022. Math Augmentation:
How Authors Enhance the Readability of Formulas using Novel Visual Design
Practices. In CHI Conference on Human Factors in Computing Systems. ACM.
https://doi.org/10.1145/3491102.3501932

[24] Jeffrey Heer. 2021. Fast & Accurate Gaussian Kernel Density Estimation. In 2021
IEEE Visualization Conference (VIS). IEEE. https://doi.org/10.1109/vis49827.2021.
9623323

https://github.com/uwdata/living-papers/
https://www.semanticscholar.org/product/semantic-reader
https://doi.org/10.18653/v1/n18-3011
https://doi.org/10.48550/ARXIV.2203.00130
https://doi.org/10.48550/ARXIV.2203.00130
https://doi.org/10.1109/tvcg.2018.2865119
https://doi.org/10.1145/179606.179671
https://doi.org/10.1145/2851581.2892588
https://doi.org/10.1109/tvcg.2011.185
https://citationstyles.org/
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.48550/ARXIV.2205.09858
https://doi.org/10.48550/ARXIV.2205.09858
https://doi.org/10.1145/3472749.3474731
https://willcrichton.net/nota/
https://curvenote.com/
https://doi.org/10.1145/3290605.3300295
https://katex.org
https://doi.org/10.48550/ARXIV.2205.04561
https://doi.org/10.1126/science.aao0185
https://doi.org/10.1126/science.aao0185
https://pptr.dev/
https://scholar.google.com/
https://daringfireball.net/projects/markdown/
https://doi.org/10.1145/369825.369829
https://doi.org/10.1145/3411764.3445648
https://doi.org/10.1145/3411764.3445648
https://doi.org/10.1145/3491102.3501932
https://doi.org/10.1109/vis49827.2021.9623323
https://doi.org/10.1109/vis49827.2021.9623323

Living Papers: A Language Toolkit for Augmented Scholarly Communication UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

[25] William C. Hill, James D. Hollan, Dave Wroblewski, and Tim McCandless. 1992.
Edit wear and read wear. In Proceedings of the SIGCHI conference on Human factors
in computing systems - CHI ’92. ACM Press. https://doi.org/10.1145/142750.142751

[26] Daniel S. Himmelstein, Vincent Rubinetti, David R. Slochower, Dongbo Hu,
Venkat S. Malladi, Casey S. Greene, and Anthony Gitter. 2019. Open collaborative
writing with Manubot. PLOS Computational Biology 15, 6 (2019), e1007128.
https://doi.org/10.1371/journal.pcbi.1007128

[27] Tom Hope, Doug Downey, Oren Etzioni, Daniel S. Weld, and Eric Horvitz. 2022.
A Computational Inflection for Scientific Discovery. (2022). https://doi.org/10.
48550/ARXIV.2205.02007

[28] Jupyter Book. 2023. https://jupyterbook.org/.
[29] Dongyeop Kang, Andrew Head, Risham Sidhu, Kyle Lo, Daniel S. Weld, and

Marti A. Hearst. 2020. Document-Level Definition Detection in Scholarly
Documents: Existing Models, Error Analyses, and Future Directions. (2020).
https://doi.org/10.48550/ARXIV.2010.05129

[30] Dae Hyun Kim, Enamul Hoque, Juho Kim, and Maneesh Agrawala. 2018. Fa-
cilitating Document Reading by Linking Text and Tables. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology. ACM.
https://doi.org/10.1145/3242587.3242617

[31] Rodney Kinney, Chloe Anastasiades, Russell Authur, Iz Beltagy, Jonathan Bragg,
Alexandra Buraczynski, Isabel Cachola, Stefan Candra, Yoganand Chandrasekhar,
Arman Cohan, Miles Crawford, Doug Downey, Jason Dunkelberger, Oren Etzioni,
Rob Evans, Sergey Feldman, Joseph Gorney, David Graham, Fangzhou Hu, Regan
Huff, Daniel King, Sebastian Kohlmeier, Bailey Kuehl, Michael Langan, Daniel
Lin, Haokun Liu, Kyle Lo, Jaron Lochner, Kelsey MacMillan, Tyler Murray, Chris
Newell, Smita Rao, Shaurya Rohatgi, Paul Sayre, Zejiang Shen, Amanpreet Singh,
Luca Soldaini, Shivashankar Subramanian, Amber Tanaka, Alex D. Wade, Linda
Wagner, Lucy Lu Wang, Chris Wilhelm, Caroline Wu, Jiangjiang Yang, Angele
Zamarron, Madeleine Van Zuylen, and Daniel S. Weld. 2023. The Semantic
Scholar Open Data Platform. (2023). https://doi.org/10.48550/ARXIV.2301.10140

[32] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology. ACM. https://doi.org/
10.1145/2807442.2807446

[33] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, and others. 2016. Jupyter Notebooks-a publishing format
for reproducible computational workflows. Vol. 2016.

[34] D. E. Knuth. 1979. TEX and METAFONT: New directions in typesetting. American
Mathematical Society.

[35] D. E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984), 97–111.
https://doi.org/10.1093/comjnl/27.2.97

[36] Leslie Lamport. 1985. LaTeX: A Document Preparation System. Addison-Wesley
Professional.

[37] Patrice Lopez. 2009. GROBID: Combining Automatic Bibliographic Data Recogni-
tion and Term Extraction for Scholarship Publications. Springer Berlin Heidelberg,
473–474. https://doi.org/10.1007/978-3-642-04346-8_62

[38] Bruce D. Lucas and Takeo Kanade. 1981. An Iterative Image Registration Tech-
nique with an Application to Stereo Vision. In International Joint Conference on
Artificial Intelligence.

[39] John MacFarlane. 2023. Pandoc: A Universal Document Converter.
https://pandoc.org/.

[40] Meta Open Source. 2023. React. https://react.dev/.
[41] MyST Markdown. 2023. https://myst-tools.org/.
[42] T. H. Nelson. 1965. Complex information processing. In Proceedings of the 1965

20th national conference on -. ACM Press. https://doi.org/10.1145/800197.806036
[43] T. H. Nelson. 1981. Literary Machines. Mindful Press.
[44] Observable. 2023. https://observablehq.com/.
[45] Observable Inputs. 2023. https://github.com/observablehq/inputs.
[46] Observable Runtime. 2023. https://github.com/observablehq/runtime.
[47] Overleaf. 2023. Online LaTeX Editor. https://www.overleaf.com/.
[48] Thomas A Phelps and Robert Wilensky. 2000. Robust intra-document loca-

tions. Computer Networks 33, 1-6 (2000), 105–118. https://doi.org/10.1016/s1389-
1286(00)00043-8

[49] Quarto. 2023. https://quarto.org/.
[50] Napol Rachatasumrit, Jonathan Bragg, Amy X. Zhang, and Daniel S Weld. 2022.

CiteRead: Integrating Localized Citation Contexts into Scientific Paper Reading.
In 27th International Conference on Intelligent User Interfaces. ACM. https://doi.
org/10.1145/3490099.3511162

[51] Stuart Ritchie. 2022. The Big Idea: Should we get rid of the scientific pa-
per? https://www.theguardian.com/books/2022/apr/11/the-big-idea-should-we-
get-rid-of-the-scientific-paper. The Guardian 11 (2022).

[52] RMarkdown. 2023. https://rmarkdown.rstudio.com/.
[53] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Expla-

nation in Computational Notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/3173574.
3173606

[54] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 341–350. https://doi.org/10.
1109/tvcg.2016.2599030

[55] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2016. Reac-
tive Vega: A Streaming Dataflow Architecture for Declarative Interactive Visual-
ization. IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016),
659–668. https://doi.org/10.1109/tvcg.2015.2467091

[56] Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh Agrawala, and
Jeffrey Heer. 2011. ReVision. In Proceedings of the 24th annual ACM symposium
on User interface software and technology. ACM. https://doi.org/10.1145/2047196.
2047247

[57] Zejiang Shen, Kyle Lo, Lucy Lu Wang, Bailey Kuehl, Daniel S. Weld, and Doug
Downey. 2022. VILA: Improving Structured Content Extraction from Scientific
PDFs Using Visual Layout Groups. Transactions of the Association for Computa-
tional Linguistics 10 (2022), 376–392. https://doi.org/10.1162/tacl_a_00466

[58] Nicole Sultanum, Fanny Chevalier, Zoya Bylinskii, and Zhicheng Liu. 2021. Lever-
aging Text-Chart Links to Support Authoring of Data-Driven Articles with
VizFlow. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. ACM. https://doi.org/10.1145/3411764.3445354

[59] Editorial Team. 2021. Distill Hiatus. Distill 6, 7 (2021). https://doi.org/10.23915/
distill.00031

[60] The Alliance for Networking Visual Culture. 2023. Scalar.
https://scalar.me/anvc/scalar/.

[61] Typst. 2023. Typst: Compose papers faster. https://typst.app/.
[62] Bret Victor. 2011. Explorable Explanations.

http://worrydream.com/ExplorableExplanations/.
[63] Lucy Lu Wang, Isabel Cachola, Jonathan Bragg, Evie Yu-Yen Cheng, Chelsea

Haupt, Matt Latzke, Bailey Kuehl, Madeleine N van Zuylen, Linda Wagner, and
Daniel Weld. 2021. SciA11y: Converting Scientific Papers to Accessible HTML. In
The 23rd International ACM SIGACCESS Conference on Computers and Accessibility.
ACM. https://doi.org/10.1145/3441852.3476545

[64] Lars Willighagen. 2023. Citation.js. https://citation.js.org/.
[65] Gary Wolf. 1995. The Curse of Xanadu. https://www.wired.com/1995/06/xanadu/.

In Wired.
[66] Workshop on Visualization for AI Explainability. 2022. http://visxai.io/.
[67] Polle T. Zellweger, Susan Harkness Regli, Jock D. Mackinlay, and Bay-Wei Chang.

2000. The impact of fluid documents on reading and browsing. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. ACM. https:
//doi.org/10.1145/332040.332440

[68] Jonathan Zong, Crystal Lee, Alan Lundgard, JiWoong Jang, Daniel Hajas, and
Arvind Satyanarayan. 2022. Rich Screen Reader Experiences for Accessible Data
Visualization. Computer Graphics Forum 41, 3 (2022), 15–27. https://doi.org/10.
1111/cgf.14519

https://doi.org/10.1145/142750.142751
https://doi.org/10.1371/journal.pcbi.1007128
https://doi.org/10.48550/ARXIV.2205.02007
https://doi.org/10.48550/ARXIV.2205.02007
https://jupyterbook.org/
https://doi.org/10.48550/ARXIV.2010.05129
https://doi.org/10.1145/3242587.3242617
https://doi.org/10.48550/ARXIV.2301.10140
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1007/978-3-642-04346-8_62
https://pandoc.org/
https://react.dev/
https://myst-tools.org/
https://doi.org/10.1145/800197.806036
https://observablehq.com/
https://github.com/observablehq/inputs
https://github.com/observablehq/runtime
https://www.overleaf.com/
https://doi.org/10.1016/s1389-1286(00)00043-8
https://doi.org/10.1016/s1389-1286(00)00043-8
https://quarto.org/
https://doi.org/10.1145/3490099.3511162
https://doi.org/10.1145/3490099.3511162
https://www.theguardian.com/books/2022/apr/11/the-big-idea-should-we-get-rid-of-the-scientific-paper
https://www.theguardian.com/books/2022/apr/11/the-big-idea-should-we-get-rid-of-the-scientific-paper
https://rmarkdown.rstudio.com/
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2015.2467091
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1162/tacl_a_00466
https://doi.org/10.1145/3411764.3445354
https://doi.org/10.23915/distill.00031
https://doi.org/10.23915/distill.00031
https://scalar.me/anvc/scalar/
https://typst.app/
http://worrydream.com/ExplorableExplanations/
https://doi.org/10.1145/3441852.3476545
https://citation.js.org/
https://www.wired.com/1995/06/xanadu/
http://visxai.io/
https://doi.org/10.1145/332040.332440
https://doi.org/10.1145/332040.332440
https://doi.org/10.1111/cgf.14519
https://doi.org/10.1111/cgf.14519

	Abstract
	1 Introduction
	2 Related Work
	2.1 Augmented Reading
	2.2 Authoring Tools
	2.3 Information Extraction & Reuse

	3 Design Goals & Process
	4 Example Articles
	4.1 Fast & Accurate Kernel Density Estimation
	4.2 An Iterative Image Registration Technique
	4.3 Explorable Multiverse Analysis
	4.4 The Barnes-Hut Approximation
	4.5 Zoomable Paper Reader

	5 Living Papers Architecture
	5.1 Document Model
	5.2 Reactive Runtime
	5.3 Extensibility

	6 Input Parsing
	7 AST Transforms
	7.1 Post-Parse Transforms
	7.2 Opt-In Transforms
	7.3 Output-Specific Transforms

	8 Output Generation
	8.1 Web Output
	8.2 Print Output
	8.3 Computational Output

	9 Discussion & Future Work
	References

