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Figure 1: Selective visualizations from the WhaleVis dashboard: The map visualization (A) shows pelagic (offshore) whale catches
from 1880 to 1986 along with the routes traversed by whaling expeditions during this period. The bar chart (B) shows the breakdown
for pelagic vs land catches and also acts as an interface for setting a filter for pelagic whale catches. The route density in (A) enables
visual estimation of the search effort i.e., where whales were searched for. There are relatively fewer catches in the North Atlantic
and South Pacific Oceans compared to other regions. Further, since fewer expeditions traversed those waters, we are aware of a
relative reduction in search effort when inferring the whale populations from reported catches in those regions.

ABSTRACT

Whales are an important part of the oceanic ecosystem. Although
historic commercial whale hunting a.k.a. whaling has severely threat-
ened whale populations, whale researchers are looking at historical
whaling data to inform current whale status and future conservation
efforts. To facilitate this, we worked with experts in aquatic and fish-
ery sciences to create WhaleVis—–an interactive dashboard for the
commercial whaling dataset maintained by the International Whal-
ing Commission (IWC). We characterize key analysis tasks among
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whale researchers for this database, most important of which is infer-
ring spatial distribution of whale populations over time. In addition
to facilitating analysis of whale catches based on the spatio-temporal
attributes, we use whaling expedition details to plot the search routes
of expeditions. We propose a model of the catch data as a graph,
where nodes represent catch locations, and edges represent whaling
expedition routes. This model facilitates visual estimation of whale
search effort and in turn the spatial distribution of whale populations
normalized by the search effort—a well known problem in fisheries
research. It further opens up new avenues for graph analysis on the
data, including more rigorous computation of spatial distribution of
whales normalized by the search effort, and enabling new insight
generation. We demonstrate the use of our dashboard through a real
life use case.

Keywords: Whaling, conservation, data visualization dashboards

Index Terms: Applied computing—Bioinformatics; Applied
computing—Environmental sciences
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1 INTRODUCTION

Whales are critical to preserving our oceanic ecosystems [7, 23–25,
29] and are thus important for ocean conservation efforts. Effectively
protecting whales requires understanding the spatial distribution of
their populations. However, tracking whales is a high effort and low-
yield task [4, 12]. It requires scanning entire oceans for relatively
small populations of whales, essentially searching for needles in a
haystack. However, whale researchers observe that this is exactly
what commercial whale hunting expeditions did to catch whales.
Thus, commercial whale hunting a.k.a. whaling data could be used
for altruistic purposes by using it to estimate changes in whale
populations across the oceans over time.

However, commercial whaling data cannot be easily repurposed
to infer the spatial distribution of whales. In particular, the whaling
dataset emphasizes the results i.e., catches, but not the effort whalers
placed in searching for whales, and where whales actually live.
Thus, there are multiple levels of inference that must be managed
when translating whale catches (the knowns) into useful population
data (the unknown). For example, whalers plan out a route they
will follow to search for whales; along this route, they may catch
whales but they may also leave empty-handed. How do we take route
information, whaling search effort, and total catches into account to
better estimate whale populations across the oceans?

In this paper, we take the first step towards addressing this ques-
tion in the form of WhaleVis1,2—an interactive dashboard for an-
alyzing millions of records of whaling data maintained by the In-
ternational Whaling Commission (IWC). WhaleVis was developed
through a design study [19, 28, 34] in collaboration with domain
experts in aquatic and fishery sciences. The key idea of WhaleVis
is to enable analysis of whale catches combined with that of whal-
ing expedition routes, to estimate the spatial distributions of whale
populations normalized by the search effort— a well known and non-
trivial problem in fisheries research involving many variables [30].
Through WhaleVis, we transform the recorded whaling events, into
a powerful tool for ocean conservation.

A major challenge for WhaleVis is the bias of the IWC data in
favor of “positive” data points. It only records whales caught at a cer-
tain geographic location by a certain expedition, but does not record
failed searches that occurred between locations, which are critical to
understanding where whales actually were in the oceans. To address
this limitation, we propose a graph representation of whaling data
in WhaleVis, where we model the catch locations as nodes of the
graph, and the expedition routes extracted from the data, as edges
of the graph, refer Figure 1(A). In the current version of WhaleVis,
the density of edges (expedition routes) serves as a visual proxy
for search effort. This helps us to visually account for search effort
while estimating whale population maps. In the future, this graph
representation can be leveraged to calculate search effort-normalized
population maps rigorously using graph algorithms, e.g., network
diffusion [9]. It further opens up new avenues for performing graph
analysis on the data which can uncover new insights.

We develop WhaleVis in the Observable notebook environment,
using DuckDB [17] as the backend data processor, and D3.js for
rendering. We demonstrate the use of WhaleVis through a real
life example in section 5 showing how WhaleVis enables effective
analysis of historical whaling events.

In summary, we make the following contributions:
• characterization of the analysis tasks for the IWC whaling data,

• an interactive dashboard for understanding and generating insights
from historical whaling events,

• a graph representation of the whaling data to facilitate visual
estimation of whale search effort.

1observablehq.com/whale-vis-dashboard-expedition-routes
2observablehq.com/iwc-dataset-expedition-routes

2 RELATED WORK

Relevant prior work in visualization dashboards for tracking wildlife
consists of both generic wildlife mapping frameworks, and dedicated
whale mapping dashboards. iNaturalist [15] is a citizen science tool
focusing on data collection, with visualizations only to aid basic
summarization of the data. EarthRanger [6] on the other hand, is a
feature rich interactive visualization and analysis dashboard which
connects to multiple data sources. However, being too generic, both
these tools do not cater to the kind of analysis whale domain experts
are interested in.

Dedicated whale mapping dashboards include WhaleMap [32],
HappyWhale [11], Pacific Whale [21], Obis-Seamap [20] and
WhaleTest [33]. All these dashboards map whale sightings, but not
whaling events. Although Obis-Seamap and WhaleMap can connect
to multiple data sources, they lack the level of transparency to easily
incorporate the IWC whaling data. These interfaces also suffer from
user experience challenges (1) sub-optimal visualization designs
hindering interpretability of the data—Obis-Seamap, WhaleMap; (2)
unintuitive interactions for querying the data—HappyWhale, Obis-
Seamap, PacificWhale, WhaleTest; and (3) high response time for
interactions (tens of seconds) to query the full data—HappyWhale,
Obis-Seamap, WhaleMap.

To facilitate spatial analysis based on geographic coordinates, we
stick to the standard visualization approach for wildlife mapping i.e.,
scatter-plots on geographic maps [6, 11, 15, 20, 21, 32, 33]. Scalable
scatter-plots are employed for large datasets to avoid occlusion of
marks and ease cognition [10, 31]. These work by aggregating data
to show fewer visual marks and visualizing details on demand. This
approach is used in HappyWhale and Obis-Seamap. We follow the
same idea although with a slight change to better facilitate whale
researchers, refer section 4. We also draw upon best practices in
dashboard and interaction design [3, 18, 26] to facilitate intuitive
interactions and effective analysis experience.

We develop WhaleVis with domain experts, while taking the
best from both, the interaction rich nature of EarthRanger, and the
dedicated whale mapping dashboards.

3 DATASET

We use the whaling data originally collated by the Bureau of In-
ternational Whaling Statistics (BIWS) and currently maintained by
the International Whaling Commission (IWC) [1, 2]. The current
version of the dataset (V7.1) covers whaling events from 1880 to
20203 across all the oceans. It has details about whale catches like
date, geographic coordinates, species, length, sex of the whales etc.,
and about the corresponding expedition which caught the whale like
the expedition code, nation, company name, expedition type etc..
The data is available as a set of .csv files which were merged together.
Records with missing timestamp and geographic coordinates were
removed to avoid noise. We thus removed 1.4% of all the whale
catch records, leaving a total of 2,148,279 records.

Originally collected for commercial book-keeping, whale re-
searchers today are interested in using this data for whale conserva-
tion and management. This requires considerable time and effort
to transform the data, for repurposing it. In the next section, we
describe the kind of questions whale researchers ask of this dataset,
and show how WhaleVis facilitates answering these questions ef-
fectively. In section 5, we show how WhaleVis is able to quickly
replicate an analysis which otherwise costed significant time and
effort for whale researchers.

4 DESIGN STUDY & IMPLEMENTATION DETAILS

We worked with our coauthors in aquatic and fishery sciences over
four months, following best practices for design studies [19, 28, 34].

3Data from 1986 onwards currently unavailable in WhaleVis awaiting
IWC approval
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Here, we describe the analysis themes and constituent concrete
analysis tasks gathered from them.

4.1 Analysis Themes & Tasks
1. Understanding spatio-temporal distribution of whale catches.
These tasks are about seeing the big picture of how humans hunted
whales across space and time, with possible correlations with physi-
cal attributes of the whales caught.

(T1) Understand how whaling spread from one region to another
over time.

(T2) Identify areas where a certain whale species was caught in
the past, but recent surveys do not report any sightings, suggesting
possible extirpation.

(T3) Identify examples of vagrant whales: catches reported far
away from clusters of other catches and the known range of
existing species populations.

(T4) Inspect the characteristics of the whales caught in a given re-
gion and time period (species, sex, length, etc.) or by a particular
whaling expedition or country.

2. Inferring spatial distribution of whale populations from whal-
ing events. These tasks focus on generating insights about the
ground truth whale population numbers from the whaling events.
However whaling data only tells us where whales were caught. Ac-
cordingly, the following constituent tasks show the steps involved in
understanding the ground truth distribution from the whaling events.

(T5) Map the effort spent by whaling expeditions over space and
time i.e., search effort.

(T6) Compute spatial distribution of catches over time, normal-
ized by the search effort.

Note that the current state of the catch database does not make the
search effort data readily available.
3. Inform management and conservation efforts. While the first
two analysis themes were concerned about the history of whaling,
this theme targets the present and future of whales.

(T7) Extract data subsets pertaining to certain species, sex or
region, for use in models for assessing current population status.

These tasks are not exhaustive but represent the kind of questions
domains experts ask of this dataset.

4.2 Design Goals & Implementation
Based on the analysis themes and tasks, best practices in interactive
dashboard design, and future scope of use of our tool, we chose
three design goals. We now describe these design goals and share
corresponding implementation details.
G1: Enable Spatial & Graph Analysis. The first two analysis
themes are concerned with the spatial analysis of whaling events
which can be performed using the spatio-temporal data attributes.
However, tasks in the second theme cannot be performed directly
using those attributes. We recognised that mapping the search effort
(T5) and computing catches normalized by search effort (T6) could
be better facilitated if we model the catch data as a graph—nodes rep-
resenting catch locations, and edges representing expedition routes
between catch locations. This approach contributes (1) a visual
estimation of the search effort by using the route density as a visual
proxy, and (2) a framework through which graph analysis algorithms
can be applied to compute the search effort as a continuous distribu-
tion along the expedition routes, as opposed to a discrete distribution
only at the catch locations. We aim to implement graph analysis
algorithms for this task as future work. In this way, we can support
seamless transitions between spatio-temporal analysis and visual
graph analysis in future versions of WhaleVis.

Implementation. We visualize scatterplot and binned heatmap of
catches on a geographic map to enable spatial analysis, with scalable
scatterplot styled multiple levels of aggregation to handle possible
overplotting [31]. We allow setting the aggregation level indepen-
dently of the zoom level to view global level spatial trends in whaling
events, which is more helpful compared to viewing local trends in
a small zoomed-in region. We set default semantic color encoding
for the map visualization based on the scientific classification tax-
onomy for whale species [27], continental classification of nations,
and globally recognised color schemes for sex and land vs. pelagic
catches. We plan to support user configurable color encoding for
better accessibility support, as future work.

Additional pre-processing is performed to model the data as net-
work graph. We reconstruct the routes for each expedition from the
locations of its successive catches; a route is created whenever the
location over successive catches changes, indicating movement of
the expedition. We extracted 97,713 such routes (edges). These
expedition routes are also visualized on the geographical map, re-
fer Figure 1(A) and Figure 2(e).
G2: Balance Inclusivity & Usability. The ability to support as
many different kinds of analyses as possible (inclusivity), was a
recurring theme in our design discussions. Each such use case
entailed a new visualization or encoding, and corresponding UI
widgets to set the encoding or filter data as needed. However, prior
work [18] has shown that too many visual or interactive elements can
decrease usability. Users generally prefer having fewer UI elements,
and consistent and easy to use interactions. We strive to reduce such
visual clutter and balance inclusivity and usability, by adhering to
best practices of dashboard design [3, 26].
Implementation. We prioritized a default set of visualizations
in WhaleVis through our design discussions. More precisely, we
chose the data attributes covered in the analysis tasks (T1-T7) as
a reasonable starting point for whale researchers to meet their cur-
rent analysis requirements. Currently, WhaleVis visualizes catch
attributes: lat, lon, date, species, sex and length; and expedition
attributes: nation, expedition type, and the expedition routes. Sup-
porting configurable visualizations as future work is the motivation
behind our next design goal G3. To keep UI elements to a minimum,
we cross-link all the visualizations and enable interactions through
direct manipulations [14]. All the visualizations were implemented
using D3.js.
G3: Transparency & Sustainability. The IWC catch dataset was
meticulously digitized from multiple hand-written log books over
decades [1, 2] and continues to be updated even today through com-
munity involvement. In the same spirit, we aim to build a tool
which keeps the data transformation and visualization pipeline trans-
parent. This would reduce the barrier for the whale researchers
to easily explore/analyze the data, participate in improving the
tool with additional features to be implemented and insights to
be shared [16], and suggest corrections for possibly biased data pro-
cessing/visualization [5]. This becomes critical also considering the
growth of whale monitoring data, and sustaining the tool in terms of
additional datasets, use cases and scalability.
Implementation. We use the Observable notebook environment to
leverage its transparency and reactive development framework. We
create separate notebooks for data transformation and the dashboard
implementation to keep the implementation modular and facilitate
reuse. We also facilitate downloading filtered subsets of the data
for offline analysis4. We use DuckDB-Wasm [17] both for the data
transformation and as our data store.

5 USE CASE - PROGRESSION OF WHALING SPECIES

We refined WhaleVis based on the feedback from managers of the
IWC whaling dataset, in addition to the guidance from our domain

4Currently disabled in the dashboard awaiting approval from IWC
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Figure 2: Progression of whaling species over time: blue → fin → sei → minke. Columns (y) and (l) show the timeline and the distribution of
lengths respectively for each species. Column (e) shows the expedition routes (gray lines) and catches (circles) during the periods of peak whaling
(3rd column) and decline in whaling (4th column), for each species.

expert coauthors. We presented this work in the IWC Scientific
Committee Meeting [22] and are in the process of conducting a for-
mal user study for further improvements. As a use case, we replicate
and extend an analysis originally performed by Hilborn et al. [13]
which took them days to perform, but was performed within seconds
by one of our domain expert coauthors.

Figure 2 shows us how modern commercial whaling depleted one
species before moving on to the next, depending on the abundance,
ease of hunting, and the commercial gain (amount of oil) that could
be obtained from each species. Blue whales (b) followed by fin
whales (f) were two of the most heavily hunted species at the start
of the 20th century. Blue whaling declined during the 1960s, due
primarily to a decline in their numbers as illustrated by the declining
catches despite increased search effort over time (b,e). By 1970, as
fin whaling started declining for possibly similar reasons (f,e), sei
whaling peaked (s). The decline of sei whaling during the 1970-
80, overlapped with a peak in minke whaling (m). The length
histograms (l) show one possible reason behind such a progression:
blue whales are the longest (80 ft.) and thus yield high commercial
gains, compared to fin whales (70 ft.), followed by sei (50 ft.) and
minke whales (30 ft.).

Declining population was not as much a reason for decline in
minke whaling as it was for blue, fin and sei whaling (m,e). Whaling
activities in general reduced drastically after the IWC issued a ban
on commercial whaling starting 1986.

6 FUTURE WORK & CONCLUSION

Currently WhaleVis only visualizes the search paths of whaling
expeditions. We envision supporting graph analysis methods for
rigorous analysis of the search effort. An immediate use is to com-
pute realistic estimates of catches normalized by search effort, and

thus the spatial distribution of whale populations, interpolated as
a continuous function along the search path. We also plan to gen-
eralize such graph visualization and analysis constructs for route
analysis, e.g., network based diffusion [9] for multiple domains like
tracking animal movements, atmospheric/oceanic currents, etc.

The IWC whaling data is only as valuable as the insights that
can be gleaned from it, making the domain knowledge of whale
researchers just as important as the data itself. Although there are
established techniques for analyzing large tabular datasets, which we
employ in WhaleVis, we lack commensurate methods for managing
the insight corpora. In future research, we seek to explore how might
whole communities externalize, validate, and share insights with not
just each other, but also the non-experts to increase awareness about
critical global problems like conservation of wildlife [35].

The importance of historical whaling data in understanding the
current whale population distributions cannot be undermined. How-
ever to make WhaleVis a complete tool, we also plan to incorporate
interactive “what-if” modeling scenarios [8] to enable making pre-
dictions to better support future conservation efforts.

We hope that WhaleVis can thus streamline the process of gath-
ering data about and understanding, whale population distributions,
and also be used to effectively organize management actions for the
conservation of whales.
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